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ABSTRACT: Target identification and bioactivity prediction are
critical steps in the drug discovery process. Here we introduce
CODD-Pred (COmprehensive Drug Design Predictor), an online
web server with well-curated data sets from the GOSTAR
database, which is designed with a dual purpose of predicting
potential protein drug targets and computing bioactivity values of
small molecules. We first designed a double molecular graph
perception (DMGP) framework for target prediction based on a
large library of 646 498 small molecules interacting with 640
human targets. The framework achieved a top-5 accuracy of over 80% for hitting at least one target on both external validation sets.
Additionally, its performance on the external validation set comprising 200 molecules surpassed that of four existing target prediction
servers. Second, we collected 56 targets closely related to the occurrence and development of cancer, metabolic diseases, and
inflammatory immune diseases and developed a multi-model self-validation activity prediction (MSAP) framework that enables
accurate bioactivity quantification predictions for small-molecule ligands of these 56 targets. CODD-Pred is a handy tool for rapid
evaluation and optimization of small molecules with specific target activity. CODD-Pred is freely accessible at http://codd.iddd.
group/.

■ INTRODUCTION
Drug research and development (R&D) is an expensive and
time-consuming process, with statistics showing that it takes
about 15 years and more than $2 billion to successfully develop
a drug.1,2 Drug discovery, as the first step in drug R&D,
typically assumes that activating or inhibiting a target will have
a therapeutic effect on the disease in its traditional process, and
then high throughput screening (HTS) experiments are carried
out to screen out hit compounds with expected target activity
in the synthesized compound library.3,4 These two phases
usually involve target identification and hit discovery.
However, experiment-based target identification and hit
discovery methods are often limited by long experimental
cycles and the availability of protein targets and synthetic
compounds.5,6 Therefore, computational alternative methods
are used to guide and accelerate target identification and hit
discovery, such as target prediction7 and bioactivity pre-
diction.8−10

Target prediction can help elucidate the mechanism of
action of a bioactive compound11 and also detect the
polypharmacology of a drug12 and promote drug reposition-
ing.13 Target prediction methods include ligand-based14−22

and structure-based methods,23 with the former having higher
prediction accuracy, lower computational costs, and greater
flexibility.11,24 Notably, the application area of ligand-based
target prediction methods is limited by existing chemical and

biological data,25 and the data sets of the current target
prediction tools are mainly from ChEMBL and other public
open-source databases. It is worth noting that some
commercialized databases have also collected a large amount
of valuable compound data, such as GOSTAR,26 which is the
largest manually annotated structure−activity relationship
(SAR) database of small molecules, containing over 8 million
compounds with over 28 million SAR points. Therefore, we
curated a target prediction data set consisting of 646 498 small
molecules interacting with 640 human targets from the
GOSTAR database, and we adopted a double molecular
graph perception (DMGP) framework combining the multi-
task binary classification algorithm TrimNet27 developed in
our group recently and a multi-classification algorithm based
on directed message passing neural network (DMPNN)28 to
develop a precise and efficient ligand-based target prediction
method.

With the ever-growing chemical bioactivity data and the
continuous improvement of computer processing power,
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ligand-based bioactivity prediction methods have been
vigorously developed, which accurately identify new hits and
promising lead compounds from enormous chemical libraries
through QSAR modeling.8,9,29 Despite the significant progress
in medical technology, the prevalence of diseases such as
cancer, metabolic diseases, and inflammatory immune diseases
remains a pressing concern for human health worldwide. To
facilitate the discovery of hit compounds with potential
therapeutic activity for these diseases, we collected 56 targets
related to them through literature retrieval (Figure 1). Based
on the carefully curated data sets from the GOSTAR database,
we developed a robust multi-model self-validating activity
prediction (MSAP) framework combining various graph neural
network (GNN) algorithms and traditional machine learning
(ML) algorithms to model structure−activity data for small
molecular inhibitors of the above 56 disease-related targets.
This framework can provide reliable quantitative bioactivity
prediction of potential active small molecules for cancer,
metabolic diseases, and inflammatory immune diseases.

In order to comprehensively and conveniently evaluate the
potential of small molecules to become drug candidates, we
have integrated target prediction and bioactivity prediction of
small molecules into an online sever, CODD-Pred (COmpre-
hensive Drug Design Predictor). The user-friendly graphical
interface of CODD-Pred makes it easy for specialists or
nonspecialists to select the properties of compounds they are
interested in for prediction. We believe that CODD-Pred will
hopefully accelerate the drug discovery by facilitating the rapid
evaluation and optimization of compounds with specific target
activity.

■ MATERIALS AND METHODS
Data Set Curation. The data for constructing small

molecule target prediction and bioactivity prediction models
were extracted from the GOSTAR database, and details of data
set curation can be found in the Supporting Information.
Model Construction. DMGP Framework. We constructed

a double molecular graph perception framework using
TrimNet27 and DMPNN28 in the target prediction module,
which integrates the predictive results of the two algorithms to

rank the probable targets of the query molecule. First, we
designed a multi-task binary classification model using
TrimNet to learn the effect of one molecule on multiple
targets (positive or negative molecule). TrimNet is a graph-
based approach with few parameters and high prediction
accuracy recently proposed by our group which adopts a novel
triplet message mechanism to effectively learn molecular
representations. We randomly divided the target prediction
data set-bin into training, validation, and test sets according to
the molecular scaffold in a ratio of 8:1:1, respectively. The
molecules in the data sets were preprocessed by RDKit30 into
molecular graphs with atomic and bond characteristics and
adjacency matrixes, and TrimNet extracted molecular graphs
into feature vectors that can represent molecule structures
through message passing and readout stages. Different from
most message passing neural networks (MPNNs),31,32

TrimNet explicitly dropped the matrix mapping of edge
features in the message stage, calculated messages from atom−
bond−atom information through a triplet message mechanism,
and updated the hidden state of neural networks, thus avoiding
the problems of large number of parameters and insufficient
extraction of edge information in MPNN methods. When a
molecule is input, the output form of TrimNet is a 640-
dimensional 0∼1 probability vector a corresponding to 640
targets, and each dimension vector represents the probability
of the query molecule to become a positive molecule for the
corresponding target. DMPNN model, as another branch of
the DMGP framework, was used to estimate the high
dimensional similarity of the query molecule to 640 target
positive molecules. We randomly divided the data set-multi
into training (0.8), validation (0.1), and test (0.1) sets
according to the molecular scaffold, and the well-trained
DMPNN can be used to measure the query molecule more
similar to the positive molecule of which target. The similarity
measure here is different from the traditional 2D or 3D
molecular similarity, and it gives 640 similarity probability
values. When a molecule is input, the output form of DMPNN

is also a 640-dimensional 0∼1 probability vector b , and the

sum of elements in the vector b is 1. Finally, by elementwise

Figure 1. Fifty-six disease-related targets. The blue block represents target name and the corresponding green block is the typical disease affected by
the target; only blue block indicates that the target is related to multiple diseases in this disease type.
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multiplication of vector a and b , we obtained a 640-
dimensional 0∼1 relevance score vector

1
c (formula 1), and

the 640 elements in the vector
1
c represent the final relevance

scores of the query molecule to the 640 targets, respectively.
When the relevance score corresponding to a target is greater,
the target is more probably to be the target of the query
molecule, and the workflow of DMGP framework is shown in
Figure 2.

1
c a b= (1)

MSAP Framework. We developed a multi-model self-
validation activity prediction framework consisting of seven
ML regression models for bioactivity prediction, including four
graph-based deep learning models, MPNN,31 DMPNN,28

graph attention network (GAT),33 and graph isomorphism

network (GIN),34 and three traditional ML models based on
molecular fingerprinting, namely support vector machine
(SVM),35 random forest (RF),36 and eXtreme Gradient
Boosting (XGBoost).37 We randomly divided the structure−
activity data set of small-molecule inhibitors of each target into
training, validation, and testing sets in the ratio of 8:1:1 by
stratified sampling of the activity data and trained, validated,
and tested the MSAP framework. For each query molecule,
after selecting a target of interest, we provide it with two
prediction modes, namely Best-mode and Merge-mode. Based
on the performance of MSAP framework on the test set, the
Best-mode selects the best performing model to predict the
pIC50 value of the query molecule, while the Merge-mode
selects several models in the framework whose performances
meet the established criteria to predict the pIC50 value at the
same time. Specifically, the models with the top-5 perform-

Figure 2. Workflow of DMGP framework for target prediction. DMGP framework is composed of a multi-task binary classification model,
TrimNet, and a multi-classification model, DMPNN, and combines the predictive results of the two branch models to rank the probable targets of
the query molecule.

Figure 3. Workflow of bioactivity prediction. Bioactivity prediction starts by selecting a target of interest, then choosing a prediction mode, and
finally predicting the pIC50 value of the query molecule through the MSAP framework.
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ances (mean average error, MAE) and R2 > 0.6 are selected for
bioactivity prediction; when the number of models with R2 >
0.6 is greater than three but less than five, the model with R2 >
0.6 will be used for the prediction; and when there are less
than three models with R2 > 0.6, the top three models with R2

ranking are selected for prediction. After excluding abnormal
predicted values, take the average of the predicted values of
multiple models as the final predicted pIC50 value of the query
molecule in Merge-mode. The calculation process of the
predicted value of the Merge-mode is shown in eqs S1−S3,
and the workflow of bioactivity prediction is shown in Figure 3.
The performance test metrics used in the above model
frameworks are shown in the Supporting Information.
Web Server Implementation. The CODD-Pred web

server is publicly accessible via a web browser. It was built
using Flask framework on Ubuntu Linux, deployed on Tencent
cloud. Nginx enables web access, while uwsgi supports
interactions with the proxy server. CODD-Pred uses PyTorch,
scikit-learn, and RDKit for model implementation and
molecular data processing. It is compatible with popular
browsers like Edge, Chrome, and Safari.

■ RESULTS AND DISCUSSION
Profile of Data Set. We curated two data sets in the target

prediction section (data sets bin and multi); their details are
shown in Table 1. It can be observed that the two data sets

contain 640 human protein targets and 508 855 positive
interactions. Compared with some target prediction tools with
similar functions, such as SwissTargetPrediction (human
targets, 2092; number of interactions, 494 196), our data sets
contain fewer targets, but the number of interactions far
exceeds that with SwissTargetPrediction, which provides a data
basis for obtaining an accurate target predictor. Moreover, we
classified the targets of positive molecules according to their
biochemical types, which can be divided into 12 different
types, including enzyme, membrane receptor, ion channel,
epigenetic regulator, transcription factor, transporter, other
cytosolic protein, unclassified protein, other nuclear protein,
secreted protein, auxiliary transport protein, and adhesion.
Then we visualized the distribution of positive molecule
structures according to the biochemical types of their targets
using tmap,38 and the results are shown in Figure S1. The same
color in the figure represents the same target biochemical type,
each dot represents one molecule, and molecules on the same
branch are structurally similar. It can be seen that the target
biochemical types of most molecules are enzymes (61.08%),
and there is also a significant proportion of molecules whose
targets are membrane receptors (21.48%). The blue and
orange dots are spread throughout Figure S1, reflecting that
numerous studies have been conducted on enzymes and
membrane receptors, and a large number of active molecules
with rich structural types of enzymes or membrane receptors
have emerged. In addition, it can be noted that the molecules
whose targets belong to transcription factor or transporter are
mainly distributed on several different branches; it can be

inferred that the active molecules of these two types of targets
may have several major structural types.

The 56 disease-related targets we collected in the bioactivity
prediction section are shown in Figure 1. First, there are 38
cancer-related targets, such as Bruton’s tyrosine kinase (BTK),
a key therapeutic target for B-cell malignancies,39 and
anaplastic lymphoma kinase (ALK)40 and epidermal growth
factor receptor (EGFR),41 two important targets for clinical
treatment of non-small cell lung cancer (NSCLC). Next, there
are seven targets related to metabolic diseases, such as 11β-
hydroxysteroid dehydrogenase type 1 (11β-HSD1)42 and
cannabinoid receptor 1 (CB1R),43 which are considered as
attractive targets for the treatment of obesity and related
metabolic diseases. Finally, there are 11 targets related to
inflammatory immune diseases, such as Janus kinases (JAK1−
JAK3),44 the popular targets for rheumatoid arthritis (RA)
research, and two important target genes in the development
of osteoarthritis (OA): MMP-3 and MMP-13.45,46 Detailed
descriptions of these 56 targets can be found in the Supporting
Information, and details of the structure−activity data sets of
small-molecule inhibitors of 56 disease-related targets are in
Table S1, in which there are 24 targets with inhibitors over
10 000 and 16 targets with inhibitors between 5000 and
10 000; this indicates that the vast majority of targets are
supported by sufficient structure−activity data about their
inhibitors.
Model Performance of Target Prediction. We analyze

the reliability of the DMGP framework by evaluating the
performance of two branching models. First, TrimNet
demonstrated promising performance on the data set-bin test
set, with AUROC, AUPRC, precision, accuracy, sensitivity, and
specificity values of 0.884, 0.883, 0.823, 0.847, 0.838, and
0.821, respectively. Additionally, as another branch of the
DMGP framework, the DMPNN model achieved an accuracy
of 0.6664 on the data set-multi test set. To validate the
predictive capability of the entire target prediction pipeline, we
collected two external validation data sets, both containing
1500 experimentally active molecules, but with different
activity thresholds (<1 and <10 nM), for testing its
performance. These molecules were randomly selected from
the ChEMBL 30 database and were not included in the
training, validation, and test sets of TrimNet and DMPNN.
Additionally, each molecule must meet the following criteria:18

first, it is annotated as a direct binder; second, it contains <80
heavy atoms; third, it only binds to a single protein or protein
complex; fourth, its assay labels with a confidence score of >3;
fifth, it has at least two different reported human targets; sixth,
in the external validation set with a threshold of 1 nM, all
molecules have activity values (Ki, Kd, IC50, or EC50) of <1 nM,
while in the external validation set with a threshold of 10 nM
the activity values are <10 nM. The test criterion of the DMGP
framework on the two external validation sets is the top-N
accuracy of hitting at least one or two targets (Table 2). It can
be observed that the DMGP framework achieved top-1 and
top-5 accuracies exceeding 60 and 80%, respectively, on two
external validation sets with activity thresholds of 1 and 10 nM
when hitting at least one target. When hitting at least two
targets, the DMGP framework achieved a top-5 accuracy of
over 60% on both external validation sets; this suggests that the
framework can provide references for polypharmacology and
repositioning of tested molecules. In order to provide a more
objective evaluation of the target prediction performance of the
DMGP framework, we randomly selected 200 molecules from

Table 1. Volume of Bioactivity Data of Two Target
Prediction Data Sets

data set targets positive interactions interactions

data set-bin 640 508855 874371
data set-multi 640 508855 508855
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the external validation set with an activity threshold of 1 nM
(external validation data set 200). Subsequently, we conducted
tests on the DMGP framework and compared its performance
with that of four representative target prediction tools: SEA,22

PASS,47 SwissTargetPrediction,18 and Super-PRED.48 It is
worth noting that, for the sake of fairness, when testing SEA
and Super-PRED, we only considered their prediction results
and did not include the database matching results. The data in
Table 3 demonstrates that, compared to the other four

methods, DMGP achieved the highest top-N accuracy,
followed by SwissTargetPrediction, PASS, SEA, and Super-
PRED. This indicates that DMGP has a competitive target
prediction performance, which can be attributed to sufficient
data collection for each target and the effectiveness of the
design of the double molecular graph perception framework.
Model Performance of Bioactivity Prediction. In the

bioactivity prediction module, we provide two prediction
modes for the query molecule and the model invoked in the
Merge-mode is defined as the “available model”. The MAE,
MSE, RMSE, and R2 of the available models for each target on
its test set are shown in the Table S2. From the table we can
see that, after training and filtering the models for each target,
there are a total of 259 available models for 56 targets. Among
them, there are 125 models with R2 values above 0.8, 109
models with R2 values between 0.7 and 0.8, and only a few
models with R2 values between 0.6 and 0.7. In addition, the
MAEs and MSEs of 259 available models mainly fall in the
range 0.2−0.4, accounting for 58 and 52%, respectively, and
the RMSEs are mainly in the range 0.4−0.8 (86%). In general,
these models yield satisfactory performances, which can give
relatively accurate bioactivity predictions for small molecules.
MAE values of available models for each target data set are
presented separately in Table S3. Analyzing the data in the
table, we first find that RF achieves the best performance on
the remaining 52 data sets, except for the four target data sets
AKT1, HDAC6, MMP-14, and TNF-α, and the best
performing models for AKT1, HDAC6, MMP-14, and TNF-
α are SVM, DMPNN, XGBoost, and DMPNN, respectively.
Then, there are 42 target data sets where the number of

available models is five; these five models are RF, SVM,
XGBoost, DMPNN, and MPNN. However, GAT and GIN in
the MSAP framework are not included in the available models
and they do not seem to be suitable for these data sets. Finally,
the average MAEs of RF, SVM, XGBoost, DMPNN, and
MPNN on the 56 target data sets are 0.346, 0.376, 0.391,
0.382, and 0.435, respectively. Obviously, RF shows the best
predictive performance on these data sets, and MPNN has a
relatively weak performance. This reflects that on these 56
regression tasks, compared with the highly complicated and
specialized graph-based deep learning models, the lightweight
traditional ML models based on molecular fingerprint can
achieve better prediction accuracy.49

Web Usage. CODD-Pred is composed of two functional
modules: Target Prediction and Bioactivity Prediction.

The Target Prediction module allows users to obtain
possible targets for query molecules. As shown in Figure 4a,
first, users need to submit a valid SMILES string in the target
prediction interface ((i) enter a SMILES string; (ii) draw a
molecule) and then select Start Prediction. By default, the
prediction results rank the possible targets of the query
molecule according to the relevance score, and we also provide
information about the predicted targets, such as the UniProt
ID and target class. It is worth noting that, under this module,
we also integrated a DMGP model with similar accuracy
training data from ChEMBL 30 for target prediction (see
section ChEMBL-DMGP in the Supporting Information for
details). Moreover, this module also features a functionality to
return known experimental information for the input
molecules. Currently, the data sources include GOSTAR and
ChEMBL 30 target prediction data sets. If the experimentally
known targets of the input molecule are found in the target
prediction data sets, the Database Query Results section will
return the experimentally known targets of the input molecule
(Figure 4b).

In the Bioactivity Prediction module, users can select the
target they are interested in from 56 targets, and obtain the
pIC50 predicted value of the query molecule for the target. As
shown in Figure 4c, the module supports single or batch small
molecule activity prediction. First, users need to submit one or
more query molecules in the bioactivity prediction interface
((i) enter a SMILES string; (ii) draw a molecule; (iii) enter
multiple small molecules in smi or sdf file format), then select a
target they are interested in, then select a prediction mode, and
finally select Start Prediction. The prediction results are shown
in Figure 4d.

■ CONCLUSIONS
Based on the GOSTAR database, we proposed a compre-
hensive online web site, CODD-Pred, which can provide
researchers with small-molecule compound target prediction
and bioactivity prediction. The functionality of the web site
can complement some existing target prediction and
bioactivity prediction tools that data sets extracted from public
databases. Notably, one of the main challenges in creating
accurate and applicable ML models is that the available
experimental data is usually heterogeneous, noisy, and
sparse;50 therefore, during the collection of data sets, we
carefully analyzed, evaluated, and processed the bias and noise
of the data to ensure the robustness and reliability of the data
sets used for modeling. Although the web site is fully functional
and has proven performance, there are still some limitations,
such as the targets included in our current target prediction

Table 2. Performance of DMGP Framework on the Two
External Validation Data Sets

top-N accuracy (%)

activity threshold hit target N = 1 N = 5 N = 10 N = 15

<1 nM 1 65.0 84.6 89.5 91.3
2 − 65.3 73.5 77.4

<10 nM 1 62.5 83.2 89.8 92.6
2 − 63.9 74.2 78.8

Table 3. Comparative Performance of Five Target
Prediction Methods on External Validation Data Set 200

top-N accuracy (%)

method N = 1 N = 5 N = 10 N = 15

DMGP 66.0 84.0 90.0 90.0
SwissTargetPrediction 57.5 78.0 80.5 81.0
PASS 25.5 43.0 51.0 55.5
SEAa 18.5 25.0 27.5 28.5
Super-PREDa 8.5 16.0 19.0 19.0

aIn the calculation of top-N accuracy for SEA and Super-PRED, we
excluded their database match results.
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module are all human targets. In the future, in addition to
regular updates, we will add prediction models of targets from
other sources.

■ ASSOCIATED CONTENT
Data Availability Statement
Source code, external validation data sets, data set construction
methods and GOSTAR data IDs are available at https://
github.com/xiaodanyin/CODD-Pred. GOSTAR target predic-
tion data sets were collected from the GOSTAR database (data
updated until July 2021, https://www.gostardb.com/).
ChEMBL 30 target prediction data sets are available at
h t t p s : / / d r i v e . g o o g l e . c o m / fi l e / d /
1R8IIGBfo1ClfAcrAKtfAM0HgGroG7MZA/view?usp=
sharing. The trained models are stored at https://drive.google.
com/file/d/11BzN6rotyb4mYWnITdLtZg3bXbY1ixze/
view?usp=sharing and https://drive.google.com/file/d/
1BVe1XS5929g1GeDAJDqaNlAwZSoj7W2n/view, and the
models built in this study are freely available via an interface
at http://codd.iddd.group/.
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