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Abstract 29 

Protein-protein interactions (PPIs) play a crucial role in many biochemical processes 30 

and biological processes. Recently, many structure-based molecular generative models 31 

have been proposed. However, PPI sites and compounds targeting PPIs have 32 

distinguished physicochemical properties compared to traditional binding pockets and 33 

drugs, it is still a challenging task to generate compounds targeting PPIs by considering 34 

PPI complexes or interface hotspot residues. In this work, we propose a specifically 35 

molecular generative framework based on PPI interfaces, named GENiPPI. We 36 

evaluated the framework and found it can capture the implicit relationship between the 37 

PPI interface and the active molecules, and can generate novel compounds that target 38 

the PPI interface. Furthermore, the framework is able to generate diverse novel 39 

compounds with limited PPI interface inhibitors. The results show that PPI interface-40 

based molecular generative model enriches structure-based molecular generative 41 

models and facilitates the design of inhibitors based on PPI structures. 42 

 43 

 44 
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Main 57 

A vast network of genes is inter-linked through protein-protein interactions and is 58 

critical component of almost every biological process under physiological conditions, 59 

and can be ubiquitous in many living organisms and biological pathways1-4. Modulation 60 

of PPIs expands the drug target space and has enormous potential in drug discovery. In 61 

homo sapiens, it is estimated that the entire interactome comprises between 130,000 to 62 

930,000 binary PPIs5-7. Despite significant efforts in developing modulators of PPIs, 63 

drug design and development for PPI targets, especially targeting the PPI interfaces, 64 

remains challenging6,8-12. Structure-based rational design serves as an important tool 65 

for the discovery of lead compounds in drug discovery13-17. Traditional drug targets and 66 

PPIs targets have different bio-chemical features (Table 1)11,18-22, so conventional drugs 67 

and PPIs inhibitors have different physicochemical properties and drug-like properties 68 

(Table 1)11,23-30. Given their differences, developing molecular generative models of 69 

different paradigms are essential for the drug design of different target types11,19,31. 70 

 71 

Generative artificial intelligence(AI) is enable to model the distribution of training 72 

samples and generate novel samples32,33. In drug discovery, generative AI can accelerate 73 

drug discovery by generating novel molecules with desired properties. Numerous 74 

excellent review articles have summarized the development in this field16,17,34-41. 75 

Molecular generative models in drug design can be roughly divided into three 76 

categories: ligand-based molecular generative (LBMG) models, structure-77 

based(pockets or binding sites) molecular generative models (SBMG), and fragment-78 

based molecular generative models (FBMG), among which SBMG models have 79 

received much attention. 17,39,42. Currently, some significant methods in structure-based 80 

molecular generative models can be found in 43-51, molecular generative models for PPI 81 

structures or PPI interfaces have been rarely reported in the literature. In recent years,  82 

classical machine learning52-54, active learning55, and deep learning-assisted methods 56 83 

is better screening and design of PPIs inhibitors have been explored, and ligand-based 84 

molecular generative models of PPI inhibitors have been reported57. There are few 85 
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structure-based molecular generative models for PPIs targets have not been sufficiently 86 

explored. 87 

 88 

In this study, we developed a conditional molecular generative framework based on 89 

protein-protein interaction interfaces (named GENiPPI) for the design of PPI interface 90 

inhibitors. The framework was developed by a conditional Wasserstein generative 91 

adversarial network (cWGAN) with convolutional neural networks (CNNs), integrated 92 

graph attention networks (GATs) and long short-term memory (LSTM). It was designed 93 

to efficiently capture the relationship between PPI interface with active/inactive 94 

compounds to train conditional molecular generative models (Fig. 1). As demonstrated 95 

by the conditional evaluation, GENiPPI is an effective architecture for capturing the 96 

implicit relationships between the PPI interface and active compounds. In summary, 97 

GENiPPI represents a potent deep learning framework for structure-based design of 98 

PPI inhibitors. 99 

 100 

Results 101 

Generation of molecules targeting the PPI interface 102 

Here, we introduce GENiPPI a modular deep learning framework for the design of 103 

structure-based PPIs inhibitors (Fig. 1). GENiPPI is composed of four main modules:  104 

GATs module 58-60 for representation learning of the protein complex interface, CNNs 105 

module for molecular representation learning, cWGAN module 61 for conditional 106 

molecular generation, and molecular captioning network module for SMILES strings 107 

decoding (as shown in Supplementary Figs.1, Figs.2, Figs.3 and Figs.4, 108 

respectively).  109 

 110 

Our framework undergoes four steps to accomplish the generation of molecules 111 

targeting the PPI interface. In the first step, we use GATs module designed for the 112 

protein complex interface is to effectively capture the nuanced atomic-level interaction 113 

characteristics inherent to the protein complex interface region. Next, we use CNN 114 
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module to provide a representation of the compound that contains voxel and electronic 115 

density information in three-dimension space 62. And, the  cGAN module is designed 116 

to generate compounds that target PPI interfaces using features from the protein 117 

complex interface region to regulate the inputs 63. The cGAN module consists of a 118 

generator, a discriminator, and a conditional network. The generator takes a Gaussian 119 

random noise vector, and the protein complex interface features to generate a vector in 120 

the molecular embedding space, the discriminator evaluates whether the generated 121 

molecule embedding corresponds to a real or generated molecule, and the conditional 122 

network evaluates whether the molecule embedding matches the protein complex 123 

interface features. Finally, we use the molecular captioning network, which is made by 124 

a 3D CNNs and a recurrent LSTM 64to decode molecular representations. The 125 

molecular representation generated by the generator is fed as input to the 3D 126 

convolutional network with the LSTM subsequently decoding the SMILES strings. 127 

 128 

Conditional evaluation 129 

First, we verified the validity of the conditions that act as conditional molecular 130 

generative models for the protein complex interfaces. For this purpose, we selected 131 

three PPI targets: MDM2(mouse double minute 2)/p53, Bcl-2(B-cell lymphoma 2)/Bax 132 

(Bcl-2 associated X), and BAZ2B(Bromodomain adjacent to zinc finger domain protein 133 

2B)/H4(histone) for conditional evaluation. We generated 10,000 validated molecules 134 

each by the GENiPPI framework and calculated the drug-like metrics of the generated 135 

compounds: QED27, QEPPI28,29 and Fsp3(fraction of sp3 carbon atoms)65. We 136 

compared the QED, QEPPI, and Fsp3 distributions of the active compounds and the  137 

generated compounds for MDM2/p53, Bcl-2/Bax and BAZ2B/H4 (Fig. 2). As shown, 138 

the distributions of drug-like properties were similar between the generated compounds 139 

and the active compounds for the three PPI interface targets (Fig.2a, Fig.2b, and 140 

Fig.2c), while different distributions of drug-like properties were observed between the 141 

generated compounds based on different targets (Fig.2d, Fig.2e, and Fig.2f). The 142 

results demonstrate the effectiveness of the PPI interface in conditioning the molecular 143 
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generative model. The drug-like properties of the framework generated compounds 144 

migrate relative to those of the compounds in the training dataset, indicating that the 145 

framework captures the distributions of the training dataset and generates novel 146 

compounds. 147 

 148 

Model performance 149 

In order to gain insight into the performance of the GENiPPI framework and to compare 150 

it with other molecular generative models. We benchmarked our method by the MOSES 151 

platform66, a leading benchmark platform of molecular generation. We trained all 152 

models on the full training dataset and  randomly sampled 30,000 molecules. We 153 

utilized models and hyperparameters provided by the MOSES platform, such as an 154 

Adversarial Autoencoder(AAE)67, character-level recurrent neural networks 155 

(CharRNN)68, Variational Autoencoder(VAE)69, LatentGAN70 and ORGAN71. To 156 

validate the higher quality of the molecules generated by the conditioned model, we 157 

compared them with molecules sampled from the GENiPPI framework and the 158 

GENiPPI-noninterface framework without the conditioned module. We found that 159 

molecules generated by the conditioned GENiPPI framework were superior to other 160 

models in novelty and diversity. 161 

 162 

As shown in Table 2, the GENiPPI framework has advantages in terms of uniqueness, 163 

novelty, and diversity  over the GENiPPI-noninterface. The GENiPPI framework 164 

performs better overall in molecular generation. Compared with LatentGAN and 165 

ORGAN, GENiPPI offers more benefits in terms of validity and diversity. While all 166 

molecular generative models have their unique advantages in various performance 167 

comparison. However, the molecular generative models tailored to specific tasks, 168 

especially those based on PPI structure, have more advantages and inspirations from 169 

the GENiPPI framework. To understand the similarities and differences between the 170 

molecular distributions generated by the GENiPPI framework and other models. We 171 

compared the distribution of molecular properties of the Testset, iPPI-DB inhibitor, and 172 
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the generated molecular datasets of AAE, CharRNN, VAE, LatentGAN, 173 

GENiPPI(noninterface) and GENiPPI(Supplementary Figs.4). The generated 174 

compounds have similar distributions of physicochemical properties to the compounds 175 

from the training set. While most of the iPPI-DB inhibitors have QED values lower 176 

than 0.5, most of them have QEPPI values higher than 0.5. 177 

 178 

Chemical space exploration 179 

To better obtain an estimate of the chemical space distribution of the model generated 180 

molecules with the active compounds in the training datasets, we evaluated the 181 

chemical drug-like space of the generated compounds by calculating t-distributed 182 

random neighbourhood embedding (t-SNE) maps of MACCS fingerprint 72.  The t-SNE 183 

is a dimensionality reduction method used for data points visualization in two or three-184 

dimensional space by mapping high-dimensional data to a lower dimension 73,74. By 185 

this method, similar compounds are clustered to visualize the high-dimensional 186 

chemical space of the compounds. The distribution of the generated compounds and 187 

active compounds in chemical drug-like space by t-SNE visualization (Fig.3a, Fig.3b, 188 

and Fig.3c). The generated drug-like compounds not only share the chemical space 189 

with the active compounds, but are also homogeneously mixed in the two-dimensional 190 

space. The generated compounds show a similar chemical drug-like space to that of the 191 

active compounds under 2D topological fingerprint. Adding the three dimensions of 192 

compounds contributes to the design of promising drug-like compounds30,75. We 193 

performed PMI shape analysis on the generated compounds and compared them with 194 

drug-like compounds from DrugBank and iPPI-DB(Fig.3d). Many of the approved 195 

compounds are either rod or disk shaped, and the generated drug-like compounds 196 

library has a similar three-dimensional space. The PBF distribution of the library of 197 

generated drug-like compounds is about 0~2 Å(Fig.3e). The results show that many of 198 

the generated drug-like compounds are derived from relatively planar molecular 199 

scaffolds. Moreover, we evaluated the ability of the model to generate target-specific 200 

compounds by chemical space maps. To assess the overlapping of drug-like chemical 201 
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space, we utilized Tree MAP (TMAP)76 to create the 2D projection(Fig.3f). Each point 202 

corresponds to a compound and is colored by its target label. The dark and light colors 203 

denote the generated compounds and the active compounds in the training set. These 204 

results suggest that our GENiPPI model can generate compounds that are similar to the 205 

active compounds in the training set and have novel structures. The results show that 206 

the framework enriches and expands the chemical space of PPI-targeted drug-likeness 207 

compounds. 208 

 209 

Few-shot molecular generation 210 

Because of the huge consumptive costs involved in data collection, only a small amount 211 

of labeled biomedical data are usually available. The process of drug design and 212 

optimization often faces the problem of low data77. The lack of effectively labeled data 213 

tends to diminish the practical performance of most deep learning frameworks for drug 214 

design. To perform generalized molecular generative design with limited labeled data, 215 

it has been a trending topic in the few-shot generative community78,79. The GENiPPI 216 

model was applied to generate a virtual compound library for the heat shock protein 90 217 

- cell division cycle 37(Hsp90-Cdc37) interaction interface. By training the model on 218 

the PPI structure of Hsp90-Cdc37 (PDB ID: 1US7) and seven disruptors, we sampled 219 

500 valid compounds. The similarity between active disruptors and generated 220 

compounds of Hsp90/Cdc37 in the chemical space was visualized by t-SNE projection 221 

maps(Fig.4a). After few-shot learning, the generated compounds were mostly 222 

distributed around the active disruptor, which demonstrated the effectiveness of few-223 

shot learning in navigating through the targeted chemical space. We performed 224 

pharmacophore-based matching by considering DCZ3112(a novel triazine derivative 225 

that disrupts Hsp90-Cdc37 interactions) as a reference molecule80. The top 5 generated 226 

molecules have similar pharmacophore and shape features with DCZ3112(Fig.4b), 227 

demonstrating the potential of the model to be applied to low-data PPI targets. Fig. 4c, 228 

shows the hot spot amino acid residues at the PPI interface of the Hsp90-Cdc37 protein 229 

complex(PDB ID: 1US7). We performed molecular docking for prediction of the 230 
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binding poses(Fig.4e) of DCZ3112 with the Hsp90-Cdc37 complex by the UCSF 231 

DOCK6.9 program81. The structure of the Hsp90-Cdc37 complex with DCZ3112 232 

highlights the hydrogen bond interactions with amino acid residues:Arg32A, Glu33A, 233 

Ser36A , Ser115A, Gly118A, Gln119A, and Arg167B(Fig.4e), which may be the major 234 

energy contributors to protein-ligand interactions. The generated compounds were 235 

performed molecular docking together with DCZ3112, and selected compounds with 236 

reasonable binding modes and higher binding affinity by visual inspection for 237 

interaction pattern analysis. The generated compounds of GENiPPI not only obtained 238 

the better docking score than the active compounds, but also reproduced the interactions 239 

with the key residues of the PPI interface. The generated compounds also formed 240 

halogen bonds, salt bridges and π-cation interactions to improve the binding affinity of 241 

the generated compounds to the target interface(Fig.4f). In conclusion, by analyzing 242 

the interaction patterns between the generated compounds and the PPI interface, 243 

GENiPPI learned the implicit interaction rules between the active compounds and the 244 

PPI interface. 245 

 246 

Discussion 247 

We developed the GENiPPI framework, which combines protein-protein interaction 248 

(PPI) interfaces features and conditional molecular generative model to generate novel 249 

modulators for PPI interfaces. We validated the ability of GENiPPI  framework to learn 250 

the implicit relationship between PPI interfaces and active molecules through  251 

conditional evaluation experiments. GENiPPI used GATs to extract key features of PPI 252 

interfaces, and searched molecules by conditional wGAN with specific constraints. We 253 

compared GENiPPI with various evaluation settings and benchmarks to demonstrate 254 

its practical potential. 255 

 256 

Despite the promising results, our framework has some limitations that can be 257 

addressed in future work. We have not tested the model on a large number of receptor-258 

ligand pairs of PPIs, which may affect its the generalization ability. The reason is that 259 
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the current PPI has relatively little data of drug-PPI target complexes than the traditional 260 

dataset of drug-target complexes. Furthermore, the current framework does not 261 

incorporate the 3D structural information of ligand-receptor interactions of PPIs. and 262 

There are still many ways to improve representation learning, balance training speed of 263 

molecular generative models and the diversity of generated molecules. Several 264 

potential directions could further improve GENiPPI: (1) collecting and cleaning higher 265 

quality data pairs for model development and testing; (2) fusing of molecular chemical 266 

language models and pre-trained models of protein-protein structural features to fine-267 

tune the datasets of receptor-ligand of PPIs to enhance the model generalization, 268 

novelty and diversity of the generated compounds; (3) incorporating structural 269 

information of PPIs into fragment-based molecular generative models is also a 270 

promising direction; (4) change the architecture of the model or combining it with deep 271 

reinforcement learning to generate novel compounds with better binding affinity. 272 

Therefore, we will collect more data to further develop  an enhanced version of 273 

GENiPPI by combining novel representation learning methods and deep generative 274 

approaches. In summary, the GENiPPI framework brings encouraging advances in PPI 275 

structure-based molecular generative tasks and presents a tool for rational drug design 276 

in finding modulators of macromolecule-macromolecule interactions. 277 

 278 

Methods 279 

Datasets 280 

We first investigated PPI targets that were annotated with sufficient compound 281 

bioactivity data for training and evaluation of our model 82. For this study, we selected 282 

10 validated PPI drug targets that cover the binding interface(Supplementary Table). 283 

These targets are E3 ubiquitin-protein ligase Mdm2, apoptosis regulator Bcl-2, BAZ2B, 284 

apoptosis regulator Bcl-xL, BRD4 bromodomain 1 BRD4-1, CREB-binding protein 285 

(CREBBP), ephrin type-A receptor 4 (EphA4), induced myeloid leukemia cell 286 

differentiation protein Mcl-1, and menin. In addition, we randomly selected a subset of 287 

250,000 compounds as additional inactive compounds from the ChEMBL  83 dataset 288 
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that was used as part of the training datasets. A detailed data preprocessing can be found 289 

in Supplementary Note A. 290 

 291 

Model strategy and training 292 

Graph attention networks of protein-protein interaction interface 293 

In this section, the representation learning of protein-protein complexes interfaces is 294 

inspired by the work in protein docking model evaluation60, which designed a double-295 

graph representation to capture the interface features and interactions of protein-protein 296 

complexes (Supplementary Figs.1). The extracted interface region is constructed as 297 

two graphs (𝐺1 and 𝐺2) for representing the interfacial information and the residues 298 

involved in the two proteins participating in the interaction. A graph G can be defined 299 

as G = (V, E, and A),  where V is the set of nodes, and E is the set of edges between 300 

them, and A is the adjacency matrix for mapping the association between the nodes of 301 

the graph, which numerically denotes the connectivity of the graph. If the graph G has 302 

N nodes, the dimension of the adjacency matrix A of the graph is 𝑵∗𝑵, where 𝑨𝒊𝒋 > 0 303 

if the 𝑖 -th node is connected to the 𝑗 -th node, and 𝑨𝒊𝒋 = 0  otherwise. The graph 𝑮𝟏 304 

describes the coding of the atomic types of all residues in the interface region, and its 305 

adjacency matrix 𝑨𝟏 describes the classification of interatomic bonding types for all 306 

residues at the interface region, which only considers the covalent bonds between atoms 307 

of interface residues within each subunit as edges. Therefore, it is defined as follows: 308 

A𝑖𝑗
1 = {

1    𝑖𝑓 atom 𝑖 and atom 𝑗 are connected by a covalent bond or 𝑖𝑓 𝑖=𝑗     
0    otherwise

 309 

The graph 𝑮𝟐 links both covalent bonds (thus including 𝑮𝟏) and non-covalent residue 310 

interactions as edges. The adjacency matrix 𝑨𝟐 for 𝑮𝟐 describes both covalent bonds 311 

and non-covalent interactions between atoms within the range of 10.0 Å to each other. 312 

The non-covalent atom pairs are defined as those which are closer than 10.0 Å to each 313 

other. It is defined as follows: 314 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.10.10.557742doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.557742


12 
 

𝐴𝑖𝑗
2 =

{
 
 

 
 

𝐴𝑖𝑗
1 ,       𝑖𝑓 𝑖, 𝑗 ∈ receptor  𝑜𝑟 𝑖, 𝑗 ∈ ligand     

𝑒
−(𝑑𝑖𝑗−μ

2)

σ , 𝑖𝑓  𝑑𝑖𝑗   ≤    10Å  𝑎𝑛𝑑 𝑖 ∈ receptor and 𝑗 ∈ ligand;

𝑜𝑟 𝑖𝑓 𝑑𝑗 ≤ 10 Å 𝑎𝑛𝑑 𝑗 ∈ receptor 𝑎𝑛𝑑 𝑖 ∈ ligand

0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 315 

where 𝒅𝒊𝒋 represents the distance between the 𝑖-th and the 𝑗-th atoms of all atoms of all 316 

residues in the interaction region. 𝜇 and 𝜎 are learnable parameter with initial values of 317 

0.0 and 1.0, respectively. The formula 𝒆−(𝒅𝒊𝒋−𝝁)
𝟐/𝝈  decays with increasing distance 318 

between atoms. 319 

 320 

The graph representation is more flexible and natural to encode interactive information 321 

and adjacent(local) relationships. For the node features of the graph, we considered the 322 

physicochemical properties of the atoms.  We used the same features from the previous 323 

work60,84,85. Then, the feature vector of the nodes is 23 in length and was embedded into 324 

140 features by a one-layer fully connected (FC) network. 325 

 326 

The constructed graphs are used as the input for GATs. The graph consists of adjacency 327 

matrices 𝑨𝟏 , 𝑨𝟐 , node matrices 𝑵𝒎𝒏
𝟏  , 𝑵𝒑𝒒

𝟐  , and the node features, 𝒙𝒊𝒏 =328 

{𝒙𝟏
𝒊𝒏, 𝒙𝟐

𝒊𝒏, ⋯  , 𝒙𝑵
𝒊𝒏} and 𝒙 ∈ ℝ𝑭, where F is the dimensionality of the node features. For 329 

the input graph of  𝒙𝒊𝒏, the pure graph attention coefficients are defined as follows, 330 

which represent the relative importance between the 𝑖-th and 𝑗-th nodes: 331 

𝑒𝑖𝑗 = 𝑥𝑖
𝑇𝐸𝑥𝑗

′ + 𝑥𝑗
𝑇𝐸𝑥𝑖

′, 332 

where 𝒙𝒊
′ and 𝒙𝒋

′ are the transformed feature representations defined by 𝒙𝒊
′ = 𝑾𝒙𝒊

𝒊𝒏 and 333 

𝒙𝒋
′ = 𝑾𝒙𝒋

𝒊𝒏.𝑾 , 𝑬 ∈ ℝ𝑭×𝑭  are learnable matrices in the GATs. 𝒆𝒊𝒋  and 𝒆𝒋𝒊  become 334 

identical to satisfy the symmetrical property of the graph by adding 𝒙𝒊
𝑻𝑬𝒙𝒋

𝑻 and 𝒙𝒊
𝑻𝑬𝒙𝒊

′. 335 

The coefficient will only be computed for 𝑖 and 𝑗 where 𝑨𝒊𝒋 > 0. 336 

 337 

The attention coefficients will also be calculated for the elements in the adjacency 338 
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matrix. For the elements (𝑖, 𝑗), they are defined in the following form: 339 

𝑎𝑖𝑗 =
ex p(𝑒𝑖𝑗)

∑ exp(𝑒𝑖𝑗)
𝑗∈𝑁𝑖

𝐴𝑖𝑗 , 340 

where 𝒂𝒊𝒋 represents the normalized attention coefficient between the 𝑖-th and 𝑗-th node 341 

pairs, while 𝒆𝒊𝒋 is the computed symmetric graph attention coefficient. 𝑵𝒊 denotes the 342 

set of neighbors for the 𝑖-th node, which includes the interacting node 𝑗 with 𝑨𝒊𝒋 > 0. 343 

The purpose here is to define attention by considering both the physical structure 𝑨𝒊𝒋 344 

and the normalized attention coefficient 𝒆𝒊𝒋 of the interactions simultaneously. 345 

 346 

Based on the attention mechanism, the new node features of each node are updated in 347 

consideration of its neighboring nodes, which is a linear combination of the neighboring 348 

node features and the final attention coefficient 𝒂𝒊𝒋 : 349 

𝑥𝑖
′′ = ∑ 𝑎𝑖𝑗𝑥𝑗

′,

𝑗∈𝑁𝑖

 350 

Making the use of the GATs mechanism described previously, we applied four layers 351 

of GATs to process the node embedding information of the neighboring nodes and 352 

output the updated node embedding. For two adjacency matrices 𝑨𝟏 and 𝑨𝟐, we use a 353 

shared GAT. the initial input to the network is the atomic feature. Working with two 354 

matrices 𝑨𝟏 and 𝑨𝟐, we have 𝒙𝟏 = 𝑮𝑨𝑻(𝒙
𝒊𝒏, 𝑨𝟏) and 𝒙𝟐 = 𝑮𝑨𝑻(𝒙

𝒊𝒏, 𝑨𝟐). In order to 355 

focus only on the intermolecular interactions at the interface of the input protein-protein 356 

complex, we obtain the final node embedding by subtracting the embeddings of the two 357 

graphs. By subtracting the updated embedding 𝒙𝟏 from 𝒙𝟐, we can capture aggregated 358 

information on intermolecular interactions from only the other nodes in the protein-359 

protein complex interface. The output node feature is therefore defined as： 360 

𝑥𝑜𝑢𝑡 = 𝑥2 − 𝑥1, 361 

After that, the updated 𝑥𝑜𝑢𝑡 became 𝑥𝑖𝑛to iteratively increase the information through 362 

the three following GATs layers. After the four GATs layers updated the node 363 
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embeddings, the node embedding of the entire graph was summed up as the overall 364 

intermolecular interaction representation of the protein-protein complex: 365 

𝑥𝑔𝑟𝑎𝑝ℎ =∑ 𝑥𝑘 .
𝑘∈𝐺

 366 

Finally, the FC layers were applied to the 𝒙𝒈𝒓𝒂𝒑𝒉 to obtain a [4,4,4] vector as features 367 

of the protein-protein interface. 368 

 369 

Molecular representation 370 

For each SMILES string, a 3D conformer is generated using RDKit 86 and optimized 371 

using the default settings of the MMFF94 force field. The molecular structure 372 

information is then extracted into a 35Å grid centered at the geometric center of the 373 

molecule using the HTMD package87. The atoms of the molecule are discretized into a 374 

1 Å cubic grid, and eight channels are considered to compute voxelized information. 375 

Finally, the electronic density of the molecules 9th channel is calculated using the 376 

original molecule method in Multiwfn(Supplementary Figs.2) 88. 377 

 378 

Conditional Wasserstein generative adversarial networks 379 

The generator takes a conditional vector and a noise vector sampled from a Gaussian 380 

distribution as inputs. The PPI interface features([1,4,4,4], vector shape)  are 381 

concatenated with a noise vector of size [9, 4, 4, 4] and input to a 4-layer transposed 382 

convolutional neural network (CNNs) with 256, 512, 1024, and 1024 filters, 383 

respectively. The first three layers downsample the array size using concatenation 384 

convolution (s=2). For all convolutions, we use a kernel size of 4, and the Leaky ReLU 385 

is used as an activation function after convolution. BatchNorm3d is applied between 386 

convolution and activation operations to normalize the values of each channel of each 387 

sample. 388 

 389 

The discriminator consists of a 4-layer sequential convolutional neural network (CNNs) 390 

with 256, 512, 1024, and 1024 filters, respectively. The first three layers downsample 391 

the array size using concatenation convolution (s=2). For all convolutions, we use a 392 
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kernel size of 4, and the Leaky ReLU (α=0.2) is used as an activation function after 393 

convolution. InstanceNorm3d is applied between convolution and activation operations 394 

to normalize the values of each channel of each sample. 395 

 396 

The physical and spatial features of the compounds are derived from the molecular 397 

representation learning module, and the PPI interface features are obtained from the 398 

GATs module of the protein complex interface. They are used to estimate the matching 399 

probability between molecules and PPI interface features(Supplementary Figs.3). 400 

 401 

Molecular captioning network 402 

In this section, we will describe how to decode the generated molecular representation 403 

into a SMILES strings. Our work is inspired by shape-based molecular generation89,90, 404 

which designs a combination network of convolutional neural networks (CNNs) and 405 

Long Short-Term Memory (LSTM) 64 to generate SMILES strings. In brief, the 406 

molecular captioning network consists of a 3D CNNs and a recurrent LSTM. The 407 

molecular representation generated by the generator is fed as input to the 3D CNNs, 408 

and the output of the 3D CNN is fed into the LSTM to decode the SMILES strings 409 

(Supplementary Figs.4). 410 

 411 

Model training 412 

The conditional generative adversarial network is trained with Wasserstein loss. The 413 

loss functions for the generator (G(0(z,c))) and discriminator (D0(x)) are： 414 

 415 

𝐿𝑥0 = 𝐸𝑖𝑦𝑥𝑥[−𝐷𝑦(𝑥)] + 𝐸𝑧𝑥𝑥,𝑖𝑦𝑦𝑥[𝐷𝑦𝑦𝑦𝑥(𝐺𝑧𝑦(𝑧, 𝑐))] + 𝜆𝐸𝑖𝑦1[(∥ ∇𝑧𝑥𝐷𝑦(�̂�) ∥𝑧− 1)
2],

𝐼𝑥𝑥𝑥 = 𝐸𝑧𝑥𝑥,𝑖𝑥𝑥𝑦𝑥 [−𝐷𝑧 (𝐺𝑧𝑦(𝑧, 𝑐)) − 𝛼𝑙𝑜 𝑔(𝑓𝑢(𝐺𝑢(𝑧, 𝑐), 𝑐))]
 416 

 417 

where x  and 𝒸  are molecular representations and PPI interface features, respectively, 418 

sampled from the true data distribution preal, 𝓏 is a random noise vector sampled from 419 

a Gaussian distribution (pz), and f_0 is a function that evaluates the probability that a 420 
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PPI interface feature corresponds to a molecular representation. λ and α terms are 421 

regularization parameters, both empirically set to 10. λ term weighs the effect of the 422 

gradient penalty on discriminator loss. α term weighs the effect of the effect of f_0 on 423 

the loss of the generator. 424 

 425 

The model was trained for 50,000 calendar hours with a batch size of 8 (65 steps per 426 

calendar hour). The discriminators were updated after each step, while the generators 427 

were updated every 30 steps. The network was trained using the RMSprop optimizer 428 

with a learning rate of 1 × 10-4 for the generator and discriminator. during training, we 429 

monitored the similarity between real and generated molecular representations using 430 

Fréchet distances. The weights of the conditional networks were pre-trained on a binary 431 

cross-entropy loss and frozen during GAN training. Training was performed on a single 432 

NVIDIA A40 GPU, and all neural networks were built and trained using Pytorch 1.7.1 433 

91 and Tensorflow 2.5 92. 434 

 435 

Molecular generation 436 

After the model has been trained, the embedding information of the protein-protein 437 

complex interface is used to guide the model to generate novel molecules from the 438 

latent space. The maximum sampling strategy was used in the LSTM, meaning that the 439 

SMILES strings are generated by selecting the next token based on the highest 440 

prediction probability89. 441 

 442 

Evaluation settings 443 

Conditional evaluation metrics 444 

In this study, the key is to evaluate the effectiveness of the proposed framework of 445 

protein-protein interaction interface-based conditional molecular generation. Therefore, 446 

we sampled the same number of valid molecules for the three PPI targets. Then we 447 

calculated the QED values and Fsp3 by RDKit86 and calculated the QEPPI values by 448 

the QEPPI package (https://github.com/ohuelab/QEPPI)  for the generated compounds 449 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.10.10.557742doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.557742


17 
 

and others，and plotted the density distribution for comparing the differences of drug-450 

likeness. 451 

 452 

MOSES evaluation metrics 453 

To evaluate the performance of our proposed conditional molecule generation 454 

framework, we used the evaluation metrics of validity, uniqueness, novelty and 455 

diversity provided by the MOSES platform66, which are defined as follows: 456 

Validity: Molecules defined as valid in the generated molecules. 457 

Validity =
𝑁valid

𝑁generalated

 458 

Uniqueness: The proportion of unique molecules found among the generated valid 459 

molecules. 460 

Uniqueness =
𝑁unique

𝑁valid

 461 

Novelty: The generated molecules are not to be covered in the training set. 462 

Novelty =
𝑁novel

𝑁unique

 463 

FCD(Fréchet ChemNet Distance)：To detect whether the generated molecules are 464 

diverse and whether they have chemical and biological properties that are similar with 465 

the real molecules93. 466 

 467 

Molecular shape 468 

To evaluate the shape space of molecules, we used two widely adopted molecular 469 

descriptors to represent the three dimensions of molecular structure: principal moment 470 

of inertia (PMI)94 and the best-fit plane (PBF)95. The PMI descriptor classifies the 471 

geometric shape of molecules into the degree of rod-shaped (linear shape, such as 472 

acetylene), disk-shaped (planar shape, such as benzene), and sphere (spherical shape, 473 

such as adamantane). The normalized PMI ratios (NPRs) are plotted in two-474 

dimensional triangle and then used to compare the shape space covered by different sets 475 

of molecules, evaluating and visualizing the diversity of the molecular shape associated 476 

with a given set of molecules30. PBF is a three-dimensional descriptor that represents 477 
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the deviation of a molecule from a plane. The PBF descriptor is the mean distance of 478 

each heavy atom from the best-fit plane passing via all heavy atoms95. 479 

 480 

Tree MAP 481 

To explore and explain the chemical space by unsupervised visualization of high-482 

dimensional data76, we calculated MinHash fingerprint96 vectors for active compounds 483 

and generated compounds. Then tmap76 and faerun97 were utilized to construct two-484 

dimensional projections of Tree MAP (TMAP). 485 

 486 

Protocol for few-shot generation 487 

Targeting the Hsp90-Cdc37 PPI interface is recognized as an important option for 488 

cancer therapy. The crystal structure of the Hsp90-Cdc37 protein complex (PDB ID: 489 

1US7) is available for molecular docking98. In addition, known Hsp90-Cdc37 PPI 490 

disruptors were collected for training of few-shot generative. They are DCZ3112, 491 

Celastrol , FW-04-804,  Sulforaphane, Withaferin A, Platycodin D, Kongensin A 99. 492 

OpenPharmacophore(https://github.com/uibcdf/OpenPharmacophore) was utilized to 493 

create pharmacophore models and virtual screening. The protein structures were 494 

processed by using UCSF Chimera100, the program DOCK6.9 was used for semiflexible 495 

docking81, and PyMOL101 was used to create the figures. A detailed docking protocol 496 

can be found in Supplementary Note B. 497 

 498 

Data Availability 499 

The datasets are available at Github (https://github.com/AspirinCode/GENiPPI). The 500 

data implementation will be provided upon acceptance of the manuscript for publication. 501 

 502 

Code Availability 503 

All the codes are freely available at Github (https://github.com/AspirinCode/GENiPPI).  504 

The code implementation will be provided upon acceptance of the manuscript for 505 

publication. 506 
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 741 

Figure. legends 742 

Fig. 1. Generation of molecules targeting PPI.  3D structural information of the 743 

protein-protein complex interface is represented as a graph. Feature representation of 744 

the interface region is captured by using a graph attention neural networks. The 745 

representation of the voxel and electron density of the compound is encoded by a 3D 746 

convolutional neural networks (CNNs). A conditional Wasserstein generative 747 

adversarial networks is trained to generate molecular embeddings with interface 748 

features as conditions. Generator: takes interface features and random noise vectors to 749 

generate molecular embeddings for the input features. Discriminator: calculates the 750 

probability that a molecule is from a real or a fake molecule. Condition: controls or 751 

regulates the generation of molecules constrained by a specific protein-protein interface. 752 

Finally, a long short-term memory (LSTM) networks parse SMILES strings from 753 

molecular representation. 754 

 755 
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Fig. 2: Results of conditional evaluation. (a) The QED, QEPPI and Fsp3 distribution of 756 

active compounds and compounds generated by the GENiPPI framework for 757 

MDM2/p53; (b) The QED, QEPPI and Fsp3 distribution of active compounds and 758 

compounds generated by the GENiPPI framework for Bcl-2/Bax; (c) The QED, QEPPI 759 

and Fsp3 distribution of active compounds and compounds generated by the GENiPPI 760 

framework for BAZ2B/H4; (d) The QED distribution of generated compounds for 761 

MDM2/p53, Bcl-2/Bax and BAZ2B/H4; (e) The QEPPI distribution of generated 762 

compounds for MDM2/p53, Bcl-2/Bax and BAZ2B/H4; (f) The Fsp3 distribution of 763 

generated compounds for MDM2/p53, Bcl-2/Bax and BAZ2B/H4; 764 

 765 

Fig. 3: Chemical space exploration. (a) The t-SNE visualization of active compounds 766 

and generated compounds for MDM2/p53; (b) The t-SNE visualization of active 767 

compounds and generated compounds for Bcl-2/Bax; (c) The t-SNE visualization of 768 

active compounds and generated compounds for BAZ2B/H4; (d) The PMI ternary 769 

density plots of generated compounds, small molecule drugs of DrugBank, and iPPI-770 

DB inhibitors. Top left: propyne, bottom: benzene, and the top right: adamantane;  (e) 771 

The molecular three-dimensionality distribution of the generated molecules was 772 

visualized with NPR descriptors and PBF descriptors. (f) TMAP visualization of active 773 

compounds and generated compounds for MDM2/p53, Bcl-2/Bax and BAZ2B/H4. 774 

 775 

Fig. 4: Few shot molecular generation analysis. (a) The t-SNE visualization of the 776 

distribution of active compounds and generated compounds for Hsp90/Cdc37; (b) 777 

Comparison of the pharmacophore of the generated molecules with the reference 778 

molecule(DCZ3112); (c) PPI interface region(in green) of the Hsp90(in 779 

palecyan)/Cdc37(in lightpink) complex; (d) The complex structure of DCZ3112(in 780 

green) and Hsp90(in palecyan)-CDC37(in lightpink) modeled by molecular docking 781 

(PDB ID: 1US7); (e) The binding poses of generated compounds(in green) and 782 

Hsp90(in palecyan)-CDC37(in lightpink) modeled by molecular docking (PDB ID: 783 

1US7). Hydrogen bonds are displayed as blue dotted lines. π-cation Interactions are 784 

displayed as orange dotted lines. 785 
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Fig. 1. Generation of molecules targeting the PPI interface. 3D structural information

of the protein-protein complex interface is represented as a graph. Feature

representation of the interface region is captured by using a graph attention neural

networks. The representation of the voxel and electron density of the compound is

encoded by a 3D convolutional neural networks (CNNs). A conditional Wasserstein

generative adversarial networks is trained to generate molecular embeddings with

interface features as conditions. Generator: takes interface features and random noise

vectors to generate molecular embeddings for the input features. Discriminator:

calculates the probability that a molecule is from a real or a fake molecule. Condition:

controls or regulates the generation of molecules constrained by a specific protein-protein

interface.
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Fig. 2. Results of conditional evaluation. (a) The QED, QEPPI and Fsp3 distribution of

active compounds and compounds generated by the GENiPPI framework for MDM2/p53;

(b) The QED, QEPPI and Fsp3 distribution of active compounds and compounds

generated by the GENiPPI framework for Bcl-2/Bax; (c) The QED, QEPPI and Fsp3

distribution of active compounds and compounds generated by the GENiPPI framework for

BAZ2B/H4; (d) The QED distribution of generated compounds for MDM2/p53, Bcl-2/Bax

and BAZ2B/H4; (e) The QEPPI distribution of generated compounds for MDM2/p53, Bcl-

2/Bax and BAZ2B/H4; (f) The Fsp3 distribution of generated compounds for MDM2/p53,

Bcl-2/Bax and BAZ2B/H4.
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Fig. 3. Chemical space exploration. (a) The t-SNE visualization of active compounds and

generated compounds for MDM2/p53; (b) The t-SNE visualization of active compounds and

generated compounds for Bcl-2/Bax; (c) The t-SNE visualization of active compounds and

generated compounds for BAZ2B/H4; (d) The PMI ternary density plots of generated

compounds, small molecule drugs of DrugBank, and iPPI-DB inhibitors. Top left: propyne,

bottom: benzene, and the top right: adamantane; (e) The molecular three-dimensionality

distribution of the generated molecules was visualized with NPR descriptors and PBF

descriptors. (f) TMAP visualization of active compounds and generated compounds for

MDM2/p53, Bcl-2/Bax and BAZ2B/H4.
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Fig. 4. Few shot molecular generation analysis. (a)The t-SNE visualization of

the distribution of active compounds and generated compounds for Hsp90/Cdc37;

(b) Comparison of the pharmacophore of the generated molecules with the

reference molecule(DCZ3112); (c)PPI interface region(in green) of the Hsp90(in

palecyan)/Cdc37(in lightpink) complex; (d)The complex structure of DCZ3112(in

green) and Hsp90(in palecyan)-CDC37(in lightpink) modeled by molecular docking

(PDB ID: 1US7); (e)The binding poses of generated compounds(in green) and

Hsp90(in palecyan)-CDC37(in lightpink) modeled by molecular docking (PDB ID:

1US7). Hydrogen bonds are displayed as blue dotted lines. π-cation Interactions

are displayed as orange dotted lines.
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Table. 1.  
 

Table 1. Comparisons between PPI interfaces and binding sites 

PPI interfaces Binding sites 

Target properties 

Large surface area (1000‐6000 Å2)  Small surface (300‐1000 Å2) Hydrophobic 

Preference for Trp (W), Tyr (Y), and Arg (R) as PPI 
hotspot residues; subpockets 

Large volume (~260 Å3)  

Shallow, flat, flexible Pocket, cliff 

Hydrophobic, featureless, undruggability Diverse properties 

Chemical space 

MW≥ 400 MW≤ 500 

LogP ≥ 4 LogP≤ 500 

HBA ≥ 4 HBA ≤ 10 

number of rings: ≥ 4 HBD ≤ 5 

Ro4 Morelli’s rules Lipinski’s Rule of 5 (Ro5) 

Quantitative estimate of drug-likeness scores 

QEPPI QED 

 

 

 

Table. 2.  
 

Table 2. Valid, unique, novelty and FCD of sampling SMILES after training. We sampled 30,000 SMILES each time. 

Model valid Unique@1k Unique@10k novelty FCD 

Test TestSF 

AAE 0.881 1.000 0.995 0.995 8.573 9.117 

CharRNN 0.985 0.999 0.988 0.994 8.7564 8.952 

VAE 0.834 1.000 0.996 0.994 7.703 8.141 

LatentGAN 0.724 1.000 0.999 0.998 7.595 8.160 

ORGAN 0.609 0.996 0.994 0.999 39.800 41.158 

GENiPPI(noninterface) 0.999 0.997 0.975 0.997 7.653 8.132 

GENiPPI 0.999 0.998 0.977 0.998 7.450 7.884 
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