
Wang et al. 2023 | https://doi.org/10.34133/research.0231 1

RESEARCH ARTICLE

Generic Interpretable Reaction Condition 
Predictions with Open Reaction Condition 
Datasets and Unsupervised Learning of 
Reaction Center
Xiaorui  Wang1,5†, Chang-Yu  Hsieh2*†, Xiaodan  Yin1,5, Jike  Wang2,5,  
Yuquan  Li4, Yafeng  Deng5, Dejun  Jiang2,5, Zhenxing  Wu2,5,  
Hongyan  Du2, Hongming  Chen6, Yun  Li4, Huanxiang  Liu3,  
Yuwei  Wang7, Pei  Luo1, Tingjun  Hou2*, and Xiaojun  Yao3*

1Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research 

in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of 

Science and Technology, Macao, 999078, China. 2Innovation Institute for Artificial Intelligence in Medicine 

of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, 

China. 3Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China. 4College 

of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China. 5CarbonSilicon AI 

Technology Co.,  Ltd, Hangzhou, Zhejiang  310018, China. 6Center of Chemistry and Chemical Biology, 

Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China. 7College 

of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712044, China.

*Address correspondence to: xjyao@mpu.edu.mo (X.Y.); tingjunhou@zju.edu.cn (T.H.); kimhsieh@zju.

edu.cn (C-Y.H.)

†These authors contributed equally to this work.

Effective synthesis planning powered by deep learning (DL) can significantly accelerate the discovery of 
new drugs and materials. However, most DL-assisted synthesis planning methods offer either none or 
very limited capability to recommend suitable reaction conditions (RCs) for their reaction predictions. 
Currently, the prediction of RCs with a DL framework is hindered by several factors, including: (a) 
lack of a standardized dataset for benchmarking, (b) lack of a general prediction model with powerful 
representation, and (c) lack of interpretability. To address these issues, we first created 2 standardized 
RC datasets covering a broad range of reaction classes and then proposed a powerful and interpretable 
Transformer-based RC predictor named Parrot. Through careful design of the model architecture, 
pretraining method, and training strategy, Parrot improved the overall top-3 prediction accuracy on 
catalysis, solvents, and other reagents by as much as 13.44%, compared to the best previous model 
on a newly curated dataset. Additionally, the mean absolute error of the predicted temperatures was 
reduced by about 4 °C. Furthermore, Parrot manifests strong generalization capacity with superior cross-
chemical-space prediction accuracy. Attention analysis indicates that Parrot effectively captures crucial 
chemical information and exhibits a high level of interpretability in the prediction of RCs. The proposed 
model Parrot exemplifies how modern neural network architecture when appropriately pretrained can 
be versatile in making reliable, generalizable, and interpretable recommendation for RCs even when the 
underlying training dataset may still be limited in diversity.

Introduction

As a cornerstone of modern science and technology, any advance-
ment of our mastery in chemical synthesis may bear a profound 
impact on the development of downstream disciplines such 
as pharmacy, environmental science, energy industry, and mate-
rials science. For decades, scientists have been attempting 
to build reliable and convenient computer-aided synthesis 

planning (CASP) tools [1–22]. With the recent advancement 
of computing power, deep learning (DL) algorithms, and the-
oretical understanding of electronic structures and chemical 
reactions, some reliable CASP tools have been developed, and 
they could potentially enhance chemists’ productivity in syn-
thesis planning. For instance, contemporary CASP tools can 
achieve similar performance of synthetic route planning to 
human experts for some complex natural products [1]. With 

Citation: Wang X, Hsieh CY, Yin X, 
Wang J, Li Y, Deng Y, Jiang D, 
Wu Z, Du H, Chen H, et al. Generic 
Interpretable Reaction Condition 
Predictions with Open Reaction 
Condition Datasets and Unsupervised 
Learning of Reaction Center. Research 
2023;6:Article 0231. https://doi.
org/10.34133/research.0231

Submitted 1 June 2023  
Accepted 29 August 2023  
Published 16 October 2023

Copyright © 2023 Xiaorui Wang 
et al.  Exclusive licensee Science and 
Technology Review Publishing House. 
No claim to original U.S. Government 
Works. Distributed under a Creative 
Commons Attribution License 4.0 
(CC BY 4.0).

D
ow

nloaded from
 https://spj.science.org on D

ecem
ber 22, 2023

https://doi.org/10.34133/research.0231
mailto:xjyao@mpu.edu.mo
mailto:tingjunhou@zju.edu.cn
mailto:kimhsieh@zju.edu.cn
mailto:kimhsieh@zju.edu.cn
https://doi.org/10.34133/research.0231
https://doi.org/10.34133/research.0231
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.34133%2Fresearch.0231&domain=pdf&date_stamp=2023-10-16


Wang et al. 2023 | https://doi.org/10.34133/research.0231 2

the explosive growth of experimental chemical data in recent 
decades, it is anticipated that DL-assisted synthesis planning 
(DASP) tools will inevitably play a more crucial role in the 
digitized chemistry discovery. The combination of DASP and 
robotic synthesis platforms promises to eventually automate 
the pipeline of molecular discovery and optimization, starting 
from in silico synthetic route planning to autonomous exper-
imental synthesis [23] in a closed loop. Despite these encour-
aging progresses, many existing DASP algorithms still face 
nontrivial challenges [24], obstructing their wider applications 
in the labs. Particularly, it is difficult to automatically assess 
the quality of machine- proposed synthesis plans. A key factor 
that undermines the quality of DASP is that existing algorithms 
cannot reliably recommend comprehensive reaction condi-
tions (RCs) for a broad array of reactions as needed in organic 
syntheses.

The choices of a reasonable chemical environment (catalysts, 
reagents, and solvents) and other operating conditions (temper-
ature, pressure, etc.) for reactions are crucial as they collectively 
determine what product molecules to be expected along with 
reaction yields and rates. In the past, researchers would query 
the literature to learn how similar molecules were synthesized, 
and then they would apply similar reactions to obtain the target 
molecules. In this scenario, researchers tend to adopt the 
reported RCs for their synthesis plans instead of consulting a 
computational algorithm for recommendations. This practice 
restricts the choice of RCs and often turn out to be suboptimal 
choices. With the continuing curation of valuable reaction data 
and development of DL, there have been attempts to develop 
algorithms that can recommend RCs, thus potentially overcom-
ing the aforementioned limitations. As shown in Fig. 1A, RC 
prediction also has an increasing impact on the evaluation 
of synthesis pathways and the optimization of chemical RCs 
[25,26]. However, the development of a general DL-based RC 
predictor remains a complex challenge that has rarely been 
addressed. Most existing RC predictors only focus on predicting 
certain aspects of RCs (such as only solvents or reagents) or 
modeling a specific type of reactions (such as Suzuki reactions 
or Negishi reactions). For example, Walker et al. [27] predicted 
the solvents for 4 types of reactions, and Shim et al. [28] pre-
dicted the RCs for Pd-catalyzed coupling reactions. One prom-
inent factor that hinders the development of a general RC 
prediction model is the lack of high- quality and open-source 
standardized RC datasets. Previous works [25,27–30] obtained 
data from commercial or private databases, such as Reaxys. 
Because the training and testing data in most of these earlier 
works have not been disclosed to the public, it is difficult for later 
practitioners to build new models and then compare against 
previously published models under a fair setting. Clearly, there 
is an urgent need for establishing a more standardized and open-
source benchmark for RC predictions in order to stimulate or 
facilitate further algorithmic development on this front. However, 
while existing open reaction database [31] is highly favorable to 
DASP, existing data sources such as United States Patent and 
Trademark Office (USPTO) reaction data for RC prediction tasks 
still require further data cleaning and standardization to produce 
a reasonably reliable chemical RC dataset.

Another intriguing issue for the development of RC predic-
tion algorithms is to determine an effective combination of DL 
model and associated representation of chemical reactions in 
order to model the intrinsic correlations between different fac-
tors of RC. Some works [27–29,32] have represented chemical 

reactions by molecular/reaction fingerprints as the input to 
feed-forward neural network or traditional machine learning 
model, but these representation methods are not inherently 
compatible with the more advanced DL algorithms such as 
Transformer with the attention mechanisms, which may improve 
the interpretability and prediction accuracy. There is also a 
work [30] using molecular graph and graph neural network 
(GNN) as the representation method and DL model, respec-
tively, for predicting the RCs on a small-scale reaction dataset. 
This method proposed by Maser et al. is suitable for RC pre-
dictions when facing a training set with small sample size and 
a fixed number of molecular graphs are involved in the reaction 
samples (for example, the reactions always involve 2 reactants 
and 1 product), but it is not suitable for modeling more complex 
large-scale general RC data. For modeling multiple classes of 
RCs, the simplest way is to model multiple classes of RCs sep-
arately [22], but this approach cannot render a model to truly 
learn the intrinsic correlation between RCs. Gao et al. [29] 
formulated RC recommendations as a sequential prediction 
task and used a method similar to the recurrent neural network 
such that the RCs predicted in the previous step are fed into 
the model as the input for the next step prediction, which better 
considered the relationship between the predicted RCs, but the 
deep neural network architecture adopted by Gao et al. still has 
room for improvement in terms of interpretability and accu-
racy. Finally, a standardized benchmark dataset for RC predic-
tion is currently lacking, and only a limited number of attempts 
have been reported to try different machine learning models 
and representation methods for RC prediction. Thus, this field 
can be greatly benefited if more advanced DL models can be 
reported and serve as strong baselines to inspire further algo-
rithmic development. As already mentioned, without specify-
ing appropriate RCs, all the CASP predictions are impractical, 
especially for a futuristic self-driving laboratory.

In this study, we spent considerable amount of time to curate 
high-quality RC datasets for benchmark purposes and devel-
oped an end-to-end RC prediction model named Parrot based 
on Transformer and pretrain strategy. We regarded the problem 
of RC prediction as a causal sequence prediction problem and 
completed the classification for multiple conditions and the 
regression of temperatures. The contributions of this work can 
be succinctly summarized as follows:

1.  We curated a large open-source dataset named USPTO-
Condition based on the original USPTO reaction dataset 
[33] for benchmarking RC recommendation models. In 
addition, according to the specific data extraction strategy, 
another general RC dataset Reaxys-TotalSyn-Condition 
was also extracted from Reaxys for a comprehensive 
model evaluation. The general procedure regarding the 
curation of the benchmark RCs dataset is shown in Fig. 1B.

2.  Leveraging the attention-based model architecture and 
training methodology specifically designed for enhanced 
reaction center, our method Parrot achieved an overall 
top-3 prediction accuracy of 2.64% and 13.44% higher 
than the RCs recommender (RCR) proposed by Gao et al. 
[26] for 2 large-scale general RC datasets mentioned 
above, respectively, and the temperature mean absolute 
error (MAE) was also reduced by about 4 °C. Figure 1C 
shows the model structure and strategy used by Parrot.

3.  We also demonstrated that our method exhibits strong 
generalization ability, maintaining higher predictive 
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accuracy and suffering less accuracy loss compared to 
RCR [26] when prediction across reaction space.

4.  Finally, we utilized the attention mechanisms to illus-
trate the intrinsic correlation between the substructures 
in the reaction and the predicted catalysts and reagents. 
The model design of Parrot can capture reaction centers 
and characteristic functional groups well. The model 
interpretation provides more scientific insights.

Results

Overview of methods
We treat the condition prediction task in 2 parts. The first part 
is the prediction of the chemical context, which is treated as a 
causal multitask multiclassification problem involving catalysts, 

2 solvents, and 2 reagents. This treatment is similar to the work 
of Gao et al. [29]. The second part is the prediction of temper-
ature, which is treated as a regression problem. Bert [34] is 
employed as the encoder to embed the reaction information 
directly from the simplified molecular input line entry system 
(SMILES) [35–38] (reactants >> products) to an abstract latent 
space, and then this machine-readable representation of reac-
tions will be used to predict the downstream tasks, such as 
chemical context condition and temperature.

Dataset
We curated 2 large datasets, including USPTO-Condition (with-
out temperature) and Reaxys-TotalSyn-Condition (with temper-
ature), with the data volumes of 680,741 and 180,129, respectively. 
Both datasets were split according to the ratio of train:valida-
tion:test = 8:1:1 in this study. All molecules, such as the reactants 

Fig. 1. Overview. (A) Effects of RC prediction tasks on synthesis planning. (B) Schematic representation of the processing flow and structure of the RC dataset. (C) Parrot 
model structure and strategy design.
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and products in each entry of reaction, are recorded in canonical 
SMILES, and each data entry contains 1 reaction SMILES, tem-
perature (in Reaxys-TotalSyn-Condition), and 5 chemical context 
labels, including catalyst, solvent1, solvent2, reagent1, and rea-
gent2. For each class of chemical context condition (catalyst, sol-
vent1, solvent2, reagent1, and reagent2), an additional “Null” 
category is added to represent that the reaction does not require 
this type of RC [29]. In the Reaxys-TotalSyn-Condition dataset, 
we retained the original details (RC name, concentration, etc.) of 
the chemical context conditions, implying that the model does 
not just predict the SMILES of chemical context condition mol-
ecules but needs to fully predict the conditions used in the original 
chemical reaction. The prediction task of the Reaxys-TotalSyn-
Condition dataset is more difficult than USPTO-Condition due 
to the sparser RC labels. After completing the curation of these 2 
datasets, we used a reaction classifier to classify the USPTO-
Condition dataset and the Reaxys-TotalSyn-Condition dataset 

into 12 categories, respectively. The composition of the reaction 
categories for both datasets is shown in Fig. 2B, and the details 
about the reaction classifier can be found in Section S2.4. Finally, 
we also designed an external validation experiment to verify the 
prediction ability of the model across the chemical reaction space, 
where we extracted 8,413 reaction data (named Reaxys-TotalSyn-
Condition-Sampled) from Reaxys that could be covered by the 
RC data labels and were significantly different from the USPTO-
Condition dataset. The details of the processing methods for the 
USPTO-Condition dataset, Reaxys-TotalSyn-Condition dataset, 
and Reaxys-TotalSyn-Condition-Sampled test set are provided 
in Section S1, the processing scripts can be found at https://github.
com/wangxr0526/Parrot, and the approach to obtain the curated 
RC datasets can be found in Data Availability. We have also 
summarized the key information of the USPTO-Condition 
and Reaxys-TotalSyn-Condition datasets in Tables S1 and S2, 
respectively.

Fig. 2. Visualization of the Parrot model prediction accuracy based on the reaction category. (A) Prediction performance based on the reaction category in the USPTO-Condition 
test set. (B) Reaction category composition of the USPTO-Condition dataset and Reaxys-TotalSyn-Condition dataset. (C) Distribution of the similarity between the reactions 
within USPTO-Condition and Reaxys-TotalSyn-Condition-Sampled and between USPTO-Condition and Reaxys-TotalSyn-Condition-Sampled.
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Model architecture
The working principle of the DL models can be roughly concep-
tualized as a 2-stage process: autonomous feature learning and 
downstream task (classification, regression, etc.) predictions. 
Inspired by the natural language processing tasks and the works 
reported by Schwaller et al. [39–42], we proposed an interpret-
able pretrained reaction condition Transformer (Parrot). This 
model uses Bert-like encoder to extract the reaction features 
from SMILES and a Transformer decoder to generate the 
hidden- layer representation of reaction context conditions. 
Finally, the classifier is employed for sequential prediction of 
reaction context conditions, and the tensor containing 5 context 
condition information is combined with the reaction embedding 
tensor. This combined tensor is then passed through a regression 
layer, named temperature decoder, to estimate the temperature. 
Our model architecture is summarized in Fig. 3.

We treat the prediction of the chemical context (i.e., catalyst, 
solvent1, solvent2, reagent1, and reagent2) as a sequence to 5 
condition multiclass classification tasks, and the conditions for 
postprediction also consider the conditions that have been pre-
dicted, with the target lengths fixed (length = 6). We use the 
information contained in the memory tensors from the encoder 
and the decoder output tensors toward the 5 RCs to predict the 
temperature. Each of these tensors is deformed by a feed- 
forward neural network, which is fed into a third feed-forward 
neural network to compute a scalar (temperature) after tensor 
concatenation.

The loss function we use consists of 2 parts, the classification 
part and the regression part. As the general sequence-to- sequence 
generation tasks, for the classification part we use cross-entropy 
as the loss function for the optimization of 5 conditions. For the 
regression part, we use mean squared error as the loss function. 
To balance the loss values between the regression and classifica-
tion components, we introduced a coefficient α in the tempera-
ture regression loss. We tested various combinations of coefficients 
and ultimately determined that the optimal value for α is 0.001. 
The loss function equation is as follows:

where I is the chemical context condition number, ci is the 
predicted label of the i-th condition, ̂ci is the ground truth label 
of the i-th condition, t is the predicted temperature, and t̂  is 
the ground truth temperature. In our method, I = 6 (including 
5 chemical context conditions and an end token). It is worth 
noting that when the temperature prediction function is not 
imposed on Parrot, the loss function only includes the classi-
fication loss function (the first part).

Model pretrain strategy
The prediction of downstream tasks is deeply dependent on the 
embedding and representation of the source data. Inspired by the 
successful experiments on reaction classification and reaction 
yield prediction reported by Schwaller et al. [41,42], we also 
adopted a pretraining strategy when designing Parrot for RC pre-
dictions. Well-curated RC data with reaction classes and reaction 
yields is relatively rare, but there is a large inventory of raw chem-
ical reaction data. In our pipeline, we also adopted a pretraining 
strategy to allow Bert (the encoder) to better embed reaction 
SMILES to hidden tensors through unsupervised learning.

We tried 2 pretraining strategies, i.e., masked language 
modeling (Masked LM) and masked reaction center mode-
ling (Masked RCM) by incorporating the domain knowledge 
on chemical reactions. The reaction datasets we use in both 
pretraining strategies contain about 1.3 million reaction 
SMILES obtained by cleaning USPTO 1976-2016sep [33]. 
These data have been cleared of all RCs to include reactants 
and products only (reactants >> products) and keep the 
same format and content as the input of the RC prediction 
task. Considering the disparate distribution observed between 
the Reaxys-TotalSyn-Condition dataset and the USPTO-
Condition dataset (as illustrated in Fig. 2B), alongside the 
relatively smaller size of the former, we developed a Masked 
RCM pretraining strategy aimed at acquiring domain knowl-
edge related to reaction centers. With appropriate inductive 
bias, Parrot pretrained with Masked RCM delivers a superior 
performance when the training set is small. The schematic 
diagram of this strategy implementation is shown in Fig. S1. 
In the Masked RCM strategy, in order to strengthen the mod-
el's understanding of reaction centers, we increased the mask 
probability of the reaction center tokens to 0.5 instead of 
0.15. The reaction center tokens were labeled by performing 
substructure matching, which involved matching reactions 
with their corresponding reaction templates using the rdkit 
[43] library. See Table S4 for the hyperparameters used in 
the Bert Masked LM and Masked RCM pretraining.

Model performance
Unlike most of the previous works [27,28,30,32,44], our model 
is designed and trained for recommending RCs for generic sce-
narios. Since no specification of reaction types is required, Parrot 
can be directly embedded into exiting synthetic planning algo-
rithms to determine the optimality of a given synthesis path. 
Our model is more versatile than models trained on a single type 
of reaction data. For a more comprehensive evaluation of our 
method, we cleaned 2 general RC datasets used for benchmark-
ing, named USPTO-Condition and Reaxys-TotalSyn-Condition, 
extracted from USPTO and Reaxys, respectively.

USPTO-Condition results
For this dataset, we conducted 6 ablation experiments to inves-
tigate the influence of the presence or absence of pretraining, 
types of pretraining, and the size of the decoder (number of 
layers and number of heads) on model performance. We also 
conducted an enhanced training experiment for further improv-
ing the prediction accuracy of the Parrot model. The evaluated 
variants of Parrot in this dataset include Parrot-D, Parrot-LM, 
Parrot-RCM, Parrot-LM-E, Parrot-RCM-E, and Parrot-LM-
6L8H. Parrot-D employed the strategy of initializing weights 
with a uniform distribution. For Parrot-LM and Parrot-RCM, 
the encoder weights were initialized using pretrained Masked 
LM and Masked RCM Bert models trained on the USPTO reac-
tion dataset, respectively. To enhance prediction accuracy, we 
performed fine-tuning on ×5 SMILES augmented training set, 
which was created by 5-fold training data augmentation based 
on the weights of Parrot-LM and Parrot-RCM. These 2 enhanced 
models are referred to as Parrot-LM-E and Parrot-RCM-E, 
respectively. The performance of Parrot's 6 variants and the 
aforementioned baseline model RCR [29] on the entire test set 
is shown in Table 1. While solvent1 and reagent1 have a larger 
number of labels and a denser distribution, due to the sparse 

(1)
Loss=

∑

i∈I
CrossEntropyLoss

(

ci, ĉi
)

+ � ∗MSELoss
(

t, t̂
)
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Fig. 3. Parrot model architecture. The model decodes 5 contextual RCs in the first 5 steps of prediction. In the sixth step, it combines the tensor from the encoder and the 
tensor containing the information of the 5 contextual RCs from the condition decoder to predict the temperature.
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Table 1. Results of the Parrot model on the USPTO-Condition test set and comparison with the baseline modela. 

Models
Chemical context condition accuracy↑

Conditions Top-1 Top-3 Top-5 Top-10 Top-15

RCR [29] c 0.9219 0.9219 0.9219 0.9219 0.9219

s1 0.5015 0.6640 0.7055 0.7340 0.7346

s2 0.8130 0.8369 0.8461 0.8525 0.8527

r1 0.4972 0.6597 0.7402 0.8184 0.8516

r2 0.7622 0.8408 0.8664 0.8876 0.8986

Overall b 0.2596 0.3771 0.4206 0.4612 0.4717

Parrot-D c 0.9196 0.9196 0.9196 0.9196 0.9196

s1 0.4712 0.6557 0.7027 0.7273 0.7278

s2 0.8093 0.8361 0.8440 0.8494 0.8495

r1 0.4759 0.6511 0.7387 0.8249 0.8620

r2 0.7558 0.8375 0.8660 0.8911 0.9029

Overall 0.2397 0.3672 0.4159 0.4596 0.4723

Parrot-LM c 0.9235 0.9235 0.9235 0.9235 0.9235

s1 0.4927 0.6772 0.7228 0.7462 0.7468

s2 0.8067 0.8421 0.8511 0.8566 0.8568

r1 0.4961 0.6727 0.7569 0.8393 0.8740

r2 0.7648 0.8413 0.8717 0.8948 0.9052

Overall 0.2576 0.3893 0.4386 0.4813 0.4934

Parrot-LM-E c 0.9250 0.9250 0.9250 0.9250 0.9250

s1 0.5018 0.6858 0.7311 0.7536 0.7543

s2 0.8096 0.8426 0.8521 0.8582 0.8585

r1 0.5039 0.6820 0.7629 0.8436 0.8776

r2 0.7648 0.8486 0.8774 0.8998 0.9110

Overall 0.2691 0.4035 0.4510 0.4914 0.5031

Parrot-LM-6L8H d c 0.9228 0.9228 0.9228 0.9228 0.9228

s1 0.4889 0.6755 0.7220 0.7456 0.7462

s2 0.8062 0.8406 0.8500 0.8562 0.8565

r1 0.4936 0.6743 0.7583 0.8405 0.8763

r2 0.7608 0.8476 0.8762 0.9000 0.9106

Overall 0.2574 0.3902 0.4373 0.4811 0.4929

Parrot-RCM c 0.9224 0.9224 0.9224 0.9224 0.9224

s1 0.4837 0.6671 0.7118 0.7369 0.7377

s2 0.8071 0.8405 0.8500 0.8571 0.8573

r1 0.4871 0.6663 0.7513 0.8343 0.8696

r2 0.7612 0.8428 0.8701 0.8949 0.9067

Overall b 0.2529 0.3841 0.4318 0.4728 0.4848

Parrot-RCM-E c c 0.9240 0.9240 0.9240 0.9240 0.9240

s1 0.4929 0.6756 0.7204 0.7434 0.7441

s2 0.8073 0.8426 0.8525 0.8585 0.8587

r1 0.4956 0.6767 0.7577 0.8405 0.8751

r2 0.7626 0.8463 0.8752 0.8980 0.9095

Overall 0.2621 0.3947 0.4417 0.4829 0.4951

(Continued)
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distribution of the labels for catalyst, solvent2, and reagent2, we 
adopted a strategy with fewer candidate selections for the sparse 
reaction categories of catalyst, solvent2, and reagent2. Conversely, 
for the dense condition categories of solvent1 and reagent1, we 
used a strategy with more candidate selections. In our evaluation 
on the USPTO-Condition dataset, our output condition strategy 
was to predict the top-1 catalyst, top-3 solvent1, top-1 solvent2, 
top-5 reagent1, and top-1 reagent2. Finally, the 15 results (com-
binations of all the RC predictions) were sorted according to the 
overall scores (softmax probability score product for each RC 
token), and the top-k accuracy was calculated. In this experi-
ment, in order to compare the accuracy of each model more 
accurately, all top-k accuracies were calculated by imposing a 
strict matching. According to the results in Table 1, it can be seen 
that the catalyst (c) top-1 accuracies of all 7 models including 
the baseline model exceed 90%, but the accuracy of Parrot based 
on pretraining is higher than that of the RCR model. When using 
the Masked LM pretraining strategy (Parrot-LM), the top-1 
accuracy reaches 92.35%, and with further enhanced training 
(Parrot-LM-E), the accuracy increases to 92.50%. The overall 
top-3 accuracy of Parrot-LM-E is 2.64% higher than that of the 
RCR model, and the top-15 accuracy improvement increases to 
3.14%. Furthermore, except the top-1 accuracy for solvent2, 
Parrot-LM-E achieves the highest accuracy among all the model 
configurations we tried. In Parrot-D, Parrot-LM, Parrot-LM-E, 
Parrot-RCM, and Parrot-RCM-E, we employed 3 decoder layers 
with 4 attention heads per layer. We also tested the model con-
figuration using 6 decoder layers and 8 attention heads per layer 
(named Parrot-LM-6L8H), and the impact on the results was 
very slight, indicating that this task is not sensitive to the decoder 
configuration. All of the subsequent experiments adopt the 
architecture of the decoder with 3 layers and 4 attention heads 
per layer. The model achieved the best accuracy when initialized 
with Masked LM parameters, as observed in Parrot-LM-E. 
Additionally, Parrot-RCM-E, initialized with Masked RCM, also 
achieved higher overall accuracy than RCR. Due to the larger 
size of the USPTO-Condition dataset, both pretraining methods 
had similar positive effects on downstream RC predictions, 
yielding excellent results. The difficulty of the RC predictions 
may vary among different reaction categories. We also examined 
the model performance by the chemical reaction category in 
this dataset. The accuracy of the Parrot-LM model for each reac-
tion category is shown in Fig. 2A. We can see from Fig. 2A that 
Parrot-LM shows a relatively weak performance in predicting 
the C–C bond formation reaction in this dataset. Although 
AR-GCN proposed by Maser et al. [30] achieved excellent pre-
diction accuracy for reactions such as Suzuki, Negishi, C–N 
couplings, and Pauson-Khand, there exists a substantial perform-
ance gap compared to the general RC prediction models RCR 
and Parrot in this dataset. Specifically tailored for small-scale 
datasets comprising a single reaction type, AR-GCN exhibited 
an overall top-1 accuracy that was approximately 10% lower 

than the generic RC prediction model on USPTO-Condition 
dataset. As a result, it may not be well suited for RC prediction 
tasks that are closer to the real-world applications. For the devel-
opment of the GNN-based condition prediction models applied 
in the context of general synthetic planning, we also selected the 
work by Zhang et al. [22] (referred to as CIMG-Condition) as 
a comparison. Their approach involved modeling multiple RC 
strategies separately, and we established the CIMG-Condition 
prediction models for each condition category in the USPTO-
Condition dataset. By employing the same inference strategy, 
we compared this method and found that the overall top-1 accu-
racy was approximately 7% lower compared to the models that 
consider the interdependencies between conditions (RCR and 
Parrot). Due to significant differences among the modeling strat-
egies used by their approach, our method and the RCR model, 
we have included the performance of the CIMG-Condition 
models in the Supplementary Information for readers' reference. 
For detailed accuracy information on USPTO-Condition data-
set of AR-GCN and CIMG-Condition models, please refer to 
Table S10.

Reaxys-TotalSyn-Condition results
Unlike USPTO-Condition that only has the chemical context 
condition data, the Reaxys-TotalSyn-Condition dataset gives the 
operating temperature for each reaction. On this dataset, we 
conducted the 2 experiments and compared the effect of the 
type of the pretraining strategies on the Parrot model accuracy. 
Regarding the evaluation of the chemical context conditions 
prediction, we used the same method as USPTO- Condition to 
calculate the top-k accuracy. In addition, we also used MAE as 
an evaluation method for temperatures. For the prediction of 
temperatures, we used the decoder hidden tensor corresponding 
to the chemical context condition top-1 as part of the temper-
ature decoder input. In this dataset, many reaction records do 
not use catalyst, solvent2, and reagent2, and these items rarely 
show up. Especially for catalyst, we found that 96% of all records 
has no catalyst in the test set. In order to evaluate the perform-
ance of the model more reasonably, we divided the test set into 
2 parts, namely, the part containing the catalyst (denoted as 
Alpha group) and the part not containing the catalyst (denoted 
as Beta group). The model evaluation method described in 
Experiment details. The performances of these models in this 
dataset are shown in Table 2. In the Alpha part of the test 
results, the Parrot-RCM model achieved the highest accuracy, 
with an overall (s1r1) top-1 accuracy of 7.76% higher than 
the RCR model, and top-15 accuracy expanded to 13.70%. In 
the Beta part of the test, which contains less data, the Parrot-
RCM model also achieved a higher overall (c1s1r1) top-1 
accuracy of 9.7% than the RCR model, and top-15 accuracy 
expanded to 18.16%. The temperature MAE of both parts 
(Alpha and Beta) was reduced by about 4 °C compared to that 
of the RCR model. Comparing these 2 pretraining strategies, 

ac, s1, s2, r1, and r2 refer to catalyst, solvent 1, solvent 2, reagent 1, and reagent 2, respectively.
bOverall: c, s1, s2, r1, and r2.
cE: This model is fine-tuned for 2 epochs with a small learning rate using a 5× data augmentation training set based on LM/RCM.

d6L8H: The decoder of the default Parrot model is 3 layers and 4 heads per layer, and 6 layers and 8 heads per layer are used in this experiment.

Table 1.  (Continued)
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the RCM pretraining strategy performs better than LM in 
Reaxys-TotalSyn-Condition. The accuracy of AR-GCN on this 
general RC dataset still remains significantly lower compared 
to RCR and Parrot. Due to the lack of consideration for the 
relationships between RCs, the prediction accuracy of the 
general RC prediction model CIMG-Condition is lower than 
those of RCR and Parrot. However, it is noticeably superior 
to AR-GCN, which is specifically designed for modeling small 
datasets. The specific accuracy values on Reaxys-TotalSyn-
Condition of AR-GCN and CIMG-Condition models are included 
in Table S11.

Generalizable prediction capabilities across  
reaction space
To evaluate the Parrot model's ability across reaction space pre-
diction, we created an external test set for the model trained on 
USPTO-Condition, called Reaxys-TotalSyn-Condition-Sampled. 
This external test set was derived from the Reaxys-TotalSyn-
Condition dataset, and we selected a portion of the dataset with 
RC labels that can be covered by USPTO-Condition as the exter-
nal test set. The production process of this part of the dataset is 
introduced in Section S1.3. In order to quantify the distribution 

difference between the Reaxys-TotalSyn-Condition-Sampled 
dataset and USPTO-Condition dataset in chemical space, we 
calculated the average similarity of each chemical reaction to its 
5 most similar reactions within and between these 2 datasets, 
respectively. The similarity distribution histogram is visualized 
in Fig. 2C. The reaction data are represented using the reaction 
difference fingerprint (calculated from extended connectivity 
fingerprints [45]) and the similarity calculation method is tan-
imoto similarity. The blue distribution histogram shows a sig-
nificant chemical space difference between the external test 
set Reaxys-TotalSyn-Condition-Sampled and the training set 
USPTO-Condition. Differences in the distribution between the 
training and test sets can significantly increase the challenges 
in model prediction. It can be used to assess the ability of dif-
ferent models to predict across reaction spaces. For the detailed 
information on the calculation method of the similarity anal-
ysis used in this section, please refer to Section S6.

In this experiment, we used the same test approach as Reaxys-
TotalSyn-Condition to calculate the accuracy based on whether 
the test set contains catalysts, with the Alpha part containing 
7,428 test data without catalysts and the Beta part containing 
202 test data with catalysts. Since the solvents and reagents 

Table 2. Results of the Parrot model on the Reaxys-TotalSyn-Condition test set and comparison with the baseline modela.

Models
Chemical context condition accuracy↑

Temperature MAE↓
Conditions Top-1 Top-3 Top-5 Top-10 Top-15

Alpha: Test results for the portion of the test set without catalyst b

RCR s1 0.5664 0.6873 0.7226 0.7683 0.7700 25.87

r1 0.4141 0.5506 0.6143 0.6650 0.6896

overall(s1r1) 0.3102 0.4597 0.5135 0.5598 0.5761

Parrot-RCM s1 0.5931 0.7739 0.8090 0.8291 0.8298 21.67

r1 0.5114 0.6834 0.7508 0.8160 0.8423

overall(s1r1) 0.3878 0.5812 0.6424 0.6957 0.7131

Parrot-LM s1 0.5855 0.7656 0.8039 0.8241 0.8245 22.17

r1 0.5011 0.6747 0.7454 0.8147 0.8424

overall(s1r1) 0.3775 0.5691 0.6341 0.6952 0.7131

Beta: Test results for the portion of the test set containing the catalyst c

RCR c1 0.1866 0.3134 0.3433 0.4900 0.4900 24.77

s1 0.3806 0.4975 0.5647 0.6244 0.6468

r1 0.2662 0.4403 0.5100 0.6791 0.7388

Overall (c1s1r1) 0.0746 0.1517 0.1940 0.2612 0.2985

Parrot-RCM c1 0.2861 0.4552 0.5050 0.6194 0.6194 20.39

s1 0.4229 0.6095 0.7040 0.7910 0.8159

r1 0.3980 0.6269 0.7040 0.8333 0.8706

Overall (c1s1r1) 0.1716 0.2861 0.3557 0.4453 0.4801

Parrot-LM c1 0.2189 0.4080 0.4851 0.6493 0.6493 21.97

s1 0.3806 0.5871 0.6915 0.7587 0.7687

r1 0.3259 0.5672 0.6741 0.8308 0.8682

Overall (c1s1r1) 0.1045 0.2537 0.3259 0.4527 0.4826

ac, s1, s2, r1, and r2 refer to catalyst, solvent 1, solvent 2, reagent 1, and reagent 2, respectively.
bPortfolio of predicted results: s1 top3 and r1 top5; the amount of data in this part is 17,611.

cPortfolio of predicted results: c1 top2, s1 top3, and r1 top5; the amount of data in this part is 402.
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in the RCs are quite substitutable, we also adopted a more 
relaxed metrics for evaluation. The idea is that if the predicted 
results for solvent and reagent match the substitutable part 
(i.e., belonging to the same category) of the ground truth, 
then the predictions are considered to be correct for both 
types of chemical RCs. The classification method of solvents 
refers to the solvent similarity index [46], and the classifica-
tion method of reagents is based on the key substructure fin-
gerprint. The detailed classification method is introduced in 
Sections S3.1 and S3.2. The test results of the Parrot-LM-E 
and the baseline model RCR in the cross-chemical space pre-
dictions experiment are shown in Table 3.

In the Alpha part of the test results, when the test data was 
switched from the USPTO test set, which had the same training 
data, to the Reaxys-TotalSyn-Condition-Sampled test set with 
a significantly different data distribution from USPTO, both the 
Parrot and RCR models experienced varying degrees of accuracy 
reduction. RCR suffered a more notable decrease, with the top-1 
accuracy of s1r1 dropping from 38.14% to 29.77%, resulting in 
an 8.37% decrease in accuracy. On the other hand, Parrot-LM-E 
demonstrated more robust performance, experiencing only a 
4.35% decrease. Similar observations were made in the Beta part 
of the test results. Although there are significant differences in 
reaction similarity between the Reaxys-TotalSyn-Condition-
Sampled test set and the USPTO-Condition training set, the 
Parrot model achieved better prediction accuracy than RCR. 
We further show the differences in the decrease in accuracy of 
the various reaction types after transitioning the test set from 
USPTO-Condition to Reaxys-TotalSyn-Sampled in Section S8 
of the Supplementary Information. These results indicate that 
the Parrot model exhibits significantly higher cross-chemical 
space prediction capability compared to the RCR model. The 
Parrot's stronger ability to predict across reaction spaces is con-
tributed from its cross-attention mechanism's enhanced learning 
capability regarding the relationship between reaction features 
and RCs. Additionally, the pretraining strategy further enhances 
the learning of reaction features. This allows the Parrot model 
to perform well even in situations where there are significant 
differences in the chemical space of the dataset, enabling it to 
capture crucial information effectively.

Interpretability results
In this section, we conducted analyses from 2 different perspec-
tives to explore the information embedded in the attention 
mechanism of the Parrot model when predicting RCs. In the 
first analysis, we investigated the model’s understanding of 
crucial reaction centers. In a different analysis, we delved deeper 
into the correlation between the predicted RCs and the func-
tional groups present in the inputted reactions. Through these 
2 analyses, we gain a more comprehensive understanding of 
the performance and information extraction capabilities of the 
Parrot model in predicting chemical RCs. Finally, we also vis-
ualized some reaction cases as demonstrations.

Analysis results of the Parrot's understanding  
of reaction centers
In this part of the analysis, we employed 3 strategies to investi-
gate the attention mechanism of the Parrot model. These strat-
egies involved examining the cross-attention mechanism, the 
self-attention mechanism of the encoder, and a comprehen-
sive analysis of both attention mechanisms. We evaluated the 

model’s understanding of reaction centers by comparing the 
overlap score (OS) between the selected active atoms repre-
sented by cross-attention weights and self-attention weights 
with the ground truth reaction centers. The schematic diagram 
of the method pipeline is shown in Fig. 4. During the analysis 
process, we introduced certain parameters that were adjusted 
on the USPTO-Condition validation set, and the final results 
were obtained on the USPTO-Condition test set. Table 4 pre-
sents the OS, false positive rate (FPR), and accuracy of the reac-
tion centers for the 3 attention information extraction strategies 
(cross-attention, Bert self-attention, and combination). The 
accuracy of the reaction centers was assessed using 2 criteria. 
The first criterion, “half ”, considered active atoms overlapping 
with at least half of the reaction center atoms as hits, while the 
second criterion, “at least 2”, required active atoms to overlap 
with at least 2 reaction center atoms to be classified as hits. 
Further details of the analysis can be found in Interpretability 
analysis.

According to the results shown in Table 4, the following 
observations can be made: The OS between the active atoms 
indicated by the cross-attention mechanism and the reaction 
centers is relatively low at 60.14%. The FPR is 32.96%. The 
accuracy of the reaction centers is 70.57% (half) and 94.61% 
(at least 2). This suggests that the cross-attention weights not 
only focus on the information of the reaction centers but also 
seem to capture other important information for RCs predic-
tion task. In subsequent interpretability analysis, we demon-
strate that this portion of important information captured by 
the cross-attention weights is closely associated with a non-
reactive characteristic functional group. In contrast, the active 
atoms identified by the Bert self-attention mechanism exhibit 
a higher OS with the reaction centers, reaching 94.70%. The 
FPR is low at only 9.49%. The accuracy of the reaction centers 
is 95.10% (half) and 95.28% (at least 2). This indicates that 
the encoder of the Parrot model demonstrates a remarkable 
understanding of the reaction center information. In the third 
analysis approach, by combining the information from the 
cross-attention mechanism and the encoder's self-attention 
mechanism, the OS between the active atoms and the reaction 
centers is further increased to 97.57%. The accuracy of the 
reaction centers significantly improves, reaching 98.38% (half) 
and 99.75% (at least 2). This suggests that the Parrot model 
exhibits complementary advantages in understanding the reac-
tion centers under different attention mechanisms. Furthermore, 
we also observe that these 4 metrics demonstrate consistent 
performance across the test and validation sets, which to some 
extent validates the reliability of our analysis approach. However, 
solely attending to the information of the reaction centers is 
insufficient for better predicting RCs. In order to further explore 
the information beyond the reaction centers that the cross- 
attention mechanism focuses on, we have designed an alterna-
tive perspective for analysis.

Analysis results of attention-based association between 
functional groups and RCs
In this analysis, we utilized cross-attention weights to investi-
gate the relationship between reactions and predicted RCs, 
focusing on the level of functional groups. Firstly, we selected 
a palladium-catalyzed alcohol deprotection reaction as an 
example, visualized in Fig. 5A to C. Figure 5B presents the heat 
map of attention weights, displaying the correspondence between 
key subsequences in the reaction SMILES and the predicted 
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RCs (high-resolution images of this example can be found in 
Figs. S2 to S13). Figure 5C illustrates the attention weights of 
palladium catalyst relative to the atoms in the reactants and 
products, clearly indicating a higher attention on the atoms 
involved in the reaction center. However, there are still some 
cases where the attention weight distribution is challenging to 
interpret. Hence, in order to comprehensively investigate the 
grasp of group information by the cross-attention mechanism, 

we employed a macroscopic approach to analyze the attention 
distribution at the group level across the entire USPTO-
Condition test dataset. We employed the BRICS [47] algorithm 
for reaction functional group segmentation and calculated the 
average attention weights across multiple heads and layers. 
Detailed analysis methods can be found in Interpretability anal-
ysis. Through this analytical approach, we obtained correlation 
scores based on attention weights for different catalysts, solvents, 

Table 3. Test results of Parrot and RCR when predicting across the chemical reaction space.

Models
Dataset information Chemical context condition accuracy↑ d

Train Test Conditions a Top-1 Top-3 Top-5 Top-10 Top-15

Alpha: Test results for the portion of the test set without catalyst b

RCR USPTO e Sampled f s1 0.4962 0.6334 0.673 0.7131 0.7138

r1 0.4654 0.6080 0.6781 0.7535 0.7882

Overall (s1r1) 0.2977 0.4335 0.4894 0.5487 0.5696

RCR USPTO USPTO s1 0.5919 0.7333 0.7709 0.7981 0.7987

r1 0.5321 0.6885 0.762 0.8359 0.8675

Overall (s1r1) 0.3814 0.5376 0.6026 0.6721 0.6959

Parrot-LM-E g USPTO Sampled s1 0.5127 0.6695 0.7122 0.7402 0.7407

r1 0.5162 0.6517 0.7189 0.7994 0.8335

Overall (s1r1) 0.3438 0.4814 0.5408 0.6062 0.6282

Parrot-LM-E USPTO USPTO s1 0.5900 0.7565 0.7984 0.8202 0.8209

r1 0.5407 0.7115 0.7871 0.8604 0.8926

Overall (s1r1) 0.3873 0.5654 0.6367 0.7077 0.7325

Beta: Test results for the portion of the test set containing the catalyst c

RCR USPTO Sampled c1 0.1683 0.2426 0.3317 0.4554 0.4554

s1 0.2871 0.4802 0.5545 0.6139 0.6535

r1 0.3168 0.4505 0.5446 0.6683 0.7277

Overall (c1s1r1) 0.0248 0.0545 0.104 0.2228 0.2822

RCR USPTO USPTO c1 0.6263 0.7074 0.7527 0.8171 0.8171

s1 0.5549 0.6847 0.7447 0.7946 0.8172

r1 0.5307 0.6655 0.7441 0.8091 0.8451

Overall (c1s1r1) 0.2769 0.3986 0.467 0.543 0.579

Parrot-LM-E USPTO Sampled c1 0.1832 0.2574 0.3317 0.4505 0.4505

s1 0.2921 0.5495 0.6089 0.6733 0.7030

r1 0.2871 0.5297 0.6040 0.7376 0.7673

Overall (c1s1r1) 0.0792 0.1634 0.2228 0.3218 0.3614

Parrot-LM-E USPTO USPTO c1 0.6144 0.7094 0.7508 0.8209 0.8209

s1 0.5448 0.7091 0.7726 0.8244 0.8447

r1 0.5360 0.6882 0.7608 0.8301 0.8650

Overall (c1s1r1) 0.2839 0.4177 0.4845 0.5692 0.6038

ac1, s1, and r1 refer to catalyst, solvent 1, and reagent 1, respectively;
bPortfolio of predicted results: s1 top3 and r1 top5; the amount of data in this part is 7,428.
cPortfolio of predicted results: c1 top2, s1 top3, and r1 top3; the amount of data in this part is 202.
dTop-k accuracy is calculated using the close math of solvents and reagents.
eUSPTO: USPTO-Condition dataset.
fSampled: Reaxys-TotalSyn-Condition-Sampled.

gE: This model is fine-tuned for 2 epochs with a small learning rate using 5× data augmentation training set based on LM.
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and reagents with respect to various chemical functional groups. 
We refer to these correlation score matrices as attention score 
maps (ASMs). Figure 5D displays the ASM between chemical 
group substructures and the catalyst, with similar ASMs obtained 
for solvents and reagents. However, due to space limitations, 
we are unable to present the ASMs for all RCs in main text. 
Please refer to Data Availability for the tables containing ASMs.

According to the ASM sorted by column (condition), mul-
tiple molecular substructures most relevant to individual RCs 
can be identified. We further visualized the molecular substruc-
tures for each RC (catalyst, solvent, and reagent) sorted by 
attention scores. The results revealed that the high attention 
score substructures for catalysts and reagents corresponded to 

characteristic molecular structures involved in the reactions. 
Two typical examples are visualized in Fig. 6. Figure 6A displays 
tetrakis(methyldiphenylphosphine) palladium and its top 15 
relevant molecular substructures. Among these 15 substruc-
tures, 11 are aromatic groups (highlighted by blue boxes) and 
the first 2 are halogenated groups (highlighted by green boxes). 
These substructures are characteristic groups for the Suzuki 
reaction catalyzed by this catalyst. Another example is shown 
in Fig. 6B, representing substructures related to a ruthenium 
metal catalyst. The most relevant groups in this case are termi-
nal alkene structures (highlighted by blue boxes), and among 
the top 6 related substructures, there are also 3 important car-
bonyl structures (highlighted by orange boxes). Additionally, 

Fig. 4. Reaction center analysis schematic diagram. In the Parrot model, while predicting chemical RCs, the cross-attention weights and the encoder's self-attention weights 
are extracted to obtain reaction center information using 3 methods: ① Using only the cross-attention mechanism, potential active atoms that may be reaction centers 
are determined by setting a threshold using the validation set. ② Using only the encoder's self-attention mechanism, an atom mapping algorithm guided by self-attention 
weights is used to label the atom mapping between reactants and products, followed by extracting reaction templates to identify potential active atoms that may be reaction 
centers. ③ Both the cross-attention mechanism and the encoder's self-attention mechanism are considered simultaneously to determine potential active atoms that may 
be reaction centers.
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among the top 15 substructures, 7 contain aromatic structures 
with benzene rings (highlighted by green boxes). These sub-
structures are characteristic groups for the Murai reaction cata-
lyzed by the ruthenium catalyst. The reaction reagents also 
exhibit high correlation scores with characteristic reaction 
substructures. Two typical examples of the reagents are visual-
ized in Fig. 7, where Fig. 7A displays the top 15 molecular 
groups most relevant to sodium carbonate (base). We can 
observe that the top 3 ranked groups are chlorinated, boronic 
acid, and brominated groups, and the remaining highly corre-
lated molecular groups are aromatic groups, which perfectly 
aligns with the Suzuki reaction. Figure 7B displays the top 15 
molecular groups most relevant to lithium aluminum hydride 
(reducing agent), which is commonly used as a reducing agent 
in organic reactions. The highly correlated groups shown in the 
figure are those that can be reduced by lithium aluminum 
hydride and include carboxyl, nitro, cyano, carbonyl, and hal-
ogenated groups. Since solvents do not directly participate in 
the reaction, their ASM representation does not exhibit the 
same level of prominence as catalysts and reagents directly 
involved in the reaction. These examples demonstrate how the 
Parrot model automatically learns the relationship between 
reactions and predicted RCs (particularly catalysts and rea-
gents) through attention mechanisms, thus exhibiting strong 
interpretability

Interpretability case study
In this subsection, we visualized some cases of Parrot's pre-
dicted RCs. Figure 8 displays the reaction centers and typical 
functional groups that the model's attention mechanism focused 
on when predicting 3 types of reactions: Grignard reaction, 
Suzuki coupling reaction, and alcohol deprotection reaction. 
Each reaction type is highlighted with a different color frame. 
Each visualization case consists of 2 parts: (a) identification of 
reaction centers guided by the self-attention weights of the 
Parrot model's encoder and (b) functional group structures 
that the cross-attention weights between the encoder and the 
decoder of the Parrot model focus on when predicting catalyst 
or reagent. In these case studies, we employed the parameter 
configurations that demonstrated the best performance for the 
reaction center recognition task. In all 3 cases, the reaction 
centers identified by the self-attention weights of the Parrot 
model's encoder accurately matched the real reaction centers. 
In the Grignard reaction case presented in Fig. 8A, the Parrot 

model assigned high attention weights to the aldehyde group 
of reactant2 and the hydroxyl group of the product when pre-
dicting the magnesium metal as a reagent. It also placed rela-
tively high attention weights on the bromine substitution 
structure of reactant1. These functional groups are typical for 
Grignard reactions. In the Suzuki coupling reaction case depicted 
in Fig. 8B, the model's attention was not only focused on the 
boronic acid group and the bromo substituent when predicting 
the metal palladium catalyst tetrakis(triphenylphosphine)palla-
dium(0), but it also exhibited significant attention weights 
toward the aromatic ring. This indicates that the model's atten-
tion is not limited to the reaction center alone. Additionally, the 
model displayed less attention weights toward ether bonds or 
nitrogen atoms on aromatic rings, which are less relevant to the 
Suzuki coupling reaction. A similar phenomenon was observed 
when the model predicted sodium carbonate as reagent. In the 
alcohol deprotection reaction case illustrated in Fig. 8C, the 
model highly attended to the protecting group on the reactant 
and the hydroxyl group on the product. These cases clearly 
demonstrate the interpretability of the Parrot's 2 attention mech-
anisms when predicting RCs.

Limitation and outlook
Although 2 RC datasets have been curated in this work, it 
should be noted that the existing datasets still face some 
limitations:

1.  The dataset USPTO-Condition is obtained from the US 
patent database, which exhibits certain limitations in 
terms of data quality. Specifically, the accuracy of the 
recorded reaction temperatures is subject to notable 
errors. Therefore, we did not include temperature infor-
mation in USPTO-Condition.

2.  Similar to the work of Gao et al. [29], this study also 
adopts the strategy of constructing a model to predict 
5 categories of RCs, and (following their workflow) we 
omit rare data with more than 5 RCs in these 2 datasets.

3.  Although this work has demonstrated that Parrot has 
stronger cross-reaction space prediction capabilities 
compared to other similar models for predicting RCs, 
similar to other works that treat RC prediction as a 
classification task, Parrot's predictions heavily rely on 
the quality of collected RC data. For novel RCs that 
are not present in the dataset, the model struggles to 

Table 4. The OS, FPR, and accuracy of the reaction centers for the 3 attention information extraction strategies in terms of the active atoms 
and reaction centers.

Dataset Attention type OS FPR
Reaction center accuracy

Half At least 2

Val Cross attention 60.36% 32.79% 71.14% 94.29%

Test 60.14% 32.96% 70.57% 94.61%

Val Bert self-attention 94.77% 9.44% 95.13% 95.31%

Test 94.70% 9.49% 95.10% 95.28%

Val Combination 97.60% 14.68% 98.35% 99.70%

Test 97.57% 14.67% 98.38% 99.75%
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Fig. 5. Example visualization of the reaction-condition attention weights. (A) Reaction example from the USPTO-Condition test set. (B) Brief visualization of the attention 
weights of the encoder’s memory by the decoder’s 3-layer 4 attention heads, with each subgraph having reaction SMILES horizontally and 5 contextual conditions vertically. 
(C) After averaging the attention weights of each attention head in each layer and visualized on the molecule, the attention weights with the palladium catalyst are shown here. 
(D) Brief visualization of the subgraph-Condition ASM (shown here is the Subgraph-Catalyst ASM). See Data Availability for source data table.
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Fig. 6. Catalysts and their highly correlated molecular subgraphs in the ASM.
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Fig. 7. Reagents and their highly correlated molecular subgraphs in the ASM.
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make accurate predictions. The approach of decoding 
RCs step by step at the character level can overcome 
the limitations of RC labels. However, it also brings the 
issues related to syntax effectiveness and the assignment 
of roles to RCs.

4.  We did not take into account of the high and low chemical 
yields when curating the data and training the model. In 
other words, the model considered all combinations of RCs 
present in the dataset to be of equal value. However, the 
chemical reaction yields are strongly affected by the RCs.

5.  Although this study made efforts to clean the RC data 
obtained from USPTO and Reaxys, the data size is still 
limited compared to large-scale commercial datasets. 
This limitation is also evident in the trained models' 
performance. Access to higher-quality and larger-scale 
RCs data can improve RC prediction model perform-
ance further. Presently, large language models such as 

GPT-4 [48,49] have excelled in literature summari-
zation. Employing similar techniques, it is feasible to 
automatically extract chemical RC data from extensive 
chemical synthesis literature to enhance data quality.

As part of the future research, we plan to integrate the chem-
ical reaction yield into the development of chemical RC pre-
diction models. Our proposed model for chemical reaction 
prediction can be seamlessly integrated into existing synthesis 
planning algorithms, thereby aiding in the optimization of syn-
thesis routes.

Discussion
In this study, we address the RC prediction task, which is essen-
tial for synthesis planning and RC optimization. In response 
to the lack of readily available open-source datasets for the RC 
prediction task, we curated 2 general RC datasets named USPTO- 
Condition and Reaxys-TotalSyn-Condition, which contain 

Fig. 8. Visualizations of reaction information identified by Parrot’s two attention mechanisms, showcased in case studies of (a) Grignard reactions, (b) Suzuki coupling 
reactions, and (c) hydroxyl deprotection reactions. Each case visualizes two parts of information: 1) the model’s identification results of reaction centers, and 2) the reaction 
functional groups attended by the model when predicting reaction conditions. In the visualization of the model’s identification results of the reaction center, the reaction 
center is highlighted in red, with the top row indicating the ground truth reaction center and the second row representing the predicted reaction center by the Parrot model. 
In the visualization of attention weights related to reaction conditions, the catalyst and its associated groups are highlighted in green, with darker shades indicating higher 
weights. Reagent1 and its associated groups are highlighted in blue.
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approximately 680,000 and 180,000 RC data, respectively. Here, 
we also proposed a novel RC prediction model called Parrot, 
which achieved the best performance on both datasets by incor-
porating a pretraining strategy using reaction domain knowl-
edge and a well-designed training pipeline. Compared with the 
baseline model, the Parrot model improved the overall top-3 
accuracy of reaction context condition prediction by 2.64% and 
13.44%, respectively, and the MAE of the temperature predic-
tion was reduced by about 4 °C. Our proposed model can not 
only simultaneously predict multiple types of RCs for multiple 
chemical reactions but also provide good interpretability by 
using an attention mechanism to gain insight into the intrinsic 
relationship between the molecular substructures in reactions 
and RCs. Additionally, Parrot can be seamlessly integrated 
into existing synthesis planning algorithms, offering synthesis 
chemists improved capabilities in designing reaction routes and 
optimizing RCs. Moreover, our open-source code includes a 
user-friendly web-based graphical user interface (GUI), pro-
viding convenient access for researchers to utilize Parrot's func-
tionalities. Looking ahead, with the availability of a larger 
volume of high-quality RCs data, we anticipate that Parrot and 
Parrot-inspired algorithms will emerge as indispensable com-
ponents of DASP tools, effectively guiding the development of 
self-driving laboratories.

Methods

Software and implementation
All the codes were implemented in the python, the rdkit [43] 
cheminformatics toolkit was used for data processing, and the 
model was constructed based on the pytorch [50] library. The 
web-based GUI was implemented using flask [51] library. 
The Parrot model is trained on Dell Precision 7920 Tower (Intel 
Xeon Bronze 3204, NVIDIA Quadro RTX8000 GPU, 512 GB 
RAM), and it can be inferred on a consumer computer Dell 
OptiPlex 7090 (Intel Core i7-11700, 8 GB RAM) without dis-
crete GPU.

Experiment details
We choose RCR [29] that also predicts multiple chemical RCs 
at the same time as the baseline model to compare with Parrot. 
In the later discussion, we report the RCR’s performance on 
the 2 datasets we prepared under the same dataset split. RCR 
is a model that uses the reaction fingerprints as the input of the 
feed-forward neural network to predict RCs.

For the prediction of the reaction context conditions, we 
adopted the top-k accuracy evaluation scheme to compare 
models, and for the temperature prediction, we adopted the 
MAE. During the test, we took the predictions of the USPTO-
Condition test set for the first-ranked catalyst, the top-3 
solvent1, the first-ranked solvent2, the top-5 reagent1, and the 
first-ranked reagent2. Finally, all predictions are sorted by the 
product of the logistic scores to compute the top-k accuracy. 
Since roughly 96% of the reaction records in the Reaxys-
TotalSyn-Condition dataset do not use catalyst (i.e., the entry 
has null value in that column), we divided the test set into 2 
separate categories depending on whether a catalyst is present 
in the reaction record. This gives us a more precise character-
ization of the models’ performance on RC predictions. The 
first test set contains the data without catalyst, and we pre-
dicted the top-3 solvents1 and the top-5 reagents1; the second 
test set contains the data with catalyst, and we predicted the 

top-2 catalysts, the top-3 solvents1, and the top-3 reagents1. The 
number of top candidates predicted for each RC category is 
determined by the sparsity level of the corresponding condition 
labels. Sparse labels result in fewer candidate selections (smaller 
top-k values), such as catalyst, solvent2, and reagent2. Conversely, 
dense labels lead to a larger number of candidate selections 
(larger top-k values), as seen in solvent1 and reagent1. For an 
illustrative diagram of the top-k accuracy calculation process 
for RC prediction across all models, please refer to Fig. S15.

We employed various model weight initialization schemes 
to train the Parrot model. For the USPTO-Condition dataset, 
we trained Parrot-D employed the strategy of initializing 
weights with a uniform distribution. Parrot-LM with encoder 
parameters initialized from a pretrained Masked LM model on 
the USPTO reaction dataset, and Parrot-RCM with encoder 
parameters initialized from a pretrained Masked RCM model 
on the USPTO reaction dataset. To further improve the pre-
diction accuracy of Parrot, we also utilized the enhanced train-
ing method of Parrot-LM-E and Parrot-RCM-E, which involved 
a ×5 augmentation of the training set. This enhanced training 
method included data augmentation through SMILES permu-
tation and multiple reactants (and products) shuffling and ini-
tialized the model parameters from the trained Parrot-LM or 
Parrot-RCM, followed by additional training for 2 epochs with 
a lower learning rate (1 × 10−6). For the Reaxys-TotalSyn-
Condition dataset, we performed the Masked RCM initializa-
tion model training Parrot-RCM and Masked LM initialization 
model training Parrot-LM. We also trained and tested the GNN-
based RC prediction model, AR-GCN, proposed by Maser et al., 
which is based on GNNs. This comparison aimed to assess the 
performance differences between a general RC prediction model 
and a model specifically designed for small-scale, specific types 
of RC datasets in large-scale prediction tasks. Furthermore, 
another graph-network-based generic RC prediction model, 
CIMG-Condition, is also included in the comparison. To ensure 
fair comparison, all models were trained using the same dataset 
splitting method, and the hyperparameters of each model were 
optimized during training to achieve optimal performance. See 
Section S2.2 for training details and hyperparameter selection 
of RCR, AR-GCN, CIMG-Condition, and Parrot.

Interpretability analysis
Many previous works have demonstrated that attention mech-
anism can capture key chemical reaction information [52–54], 
but the interpretability in RC prediction is rarely studied. In 
this section, we utilized several attention-based methods to 
analyze and demonstrate how the Parrot RC prediction model 
captures the relationship between the details of chemical reac-
tions and the predicted RCs. We analyzed the self-attention 
weights of the encoder (Bert) component as well as the cross- 
attention weights between the encoder and the RC decoder. 
These 2 sets of attention weights respectively manifest the mod-
el's understanding of the relationships among various atoms in 
the reaction and the model's understanding of the associations 
between the functional groups in the reaction and each RC.

Analysis of the Parrot's understanding of reaction centers
We first analyzed the model’s understanding of the reaction 
center, which is the most distinctive part of a chemical reaction. 
As shown in Fig. 4, we extracted the cross-attention weights 
(representing the relationship between reaction atoms and con-
ditions) and the self-attention weights of Bert (representing the 
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relationship between reactant and product atoms) when the 
Parrot model predicts the conditions. Next, we utilized the 
extracted cross-attention matrix and self-attention matrix sep-
arately and employed the following approach to analyze them 
on the USPTO-Condition validation set. We attempted 3 meth-
ods to establish correspondences between the information 
embedded in the attention weights and the reaction center:

1.  Using only the reaction-condition cross-attention weights:
First, we normalize the cross-attention weight score vector 

corresponding to each RC and select the active atoms using the 
mean and standard deviation. The selected atoms follow the 
following formula:

In this formula, ActiveAtomIdx represents the indices of atoms 
selected as active atoms. Attn is an attention weight vector that 
represents the attention values of the chemical reaction SMILES 
sequence for a specific RC (catalyst, solvent1, solvent2, reagent1, 
and reagent2). Mean(•) denotes the average of attention weights 
for a specific RC, while Std(•) represents the standard deviation. 
k is a constant used to control the number of active atoms. It is 
multiplied by the standard deviation and added to the mean to 
determine the threshold for attention weights, which is used to 
select active atoms. If an atom's attention weight is greater than 
or equal to this threshold, it is considered an active atom. It is 
important to note that the cross- attention weights contain matri-
ces for multiple layers and heads, so the aforementioned calcu-
lations need to be performed for each layer and head matrix. The 
hyperparameters include Layer, Head, k, and the ConditionType 
(C), which are optimized on the validation set.

The evaluation criterium consists of 2 components: the OS 
and the FPR. The optimal parameters are determined by max-
imizing the difference between OS and FPR. The calculation 
method is as follows:

Here, TP represents the number of active atoms that match 
the ground truth reaction center atoms, TP+FN represents the 
total number of ground truth reaction center atoms, FP repre-
sents the number of active atoms falsely predicted as reaction 

center atoms, and FP+TN represents the total number of active 
atoms. The ground truth reaction center atoms are obtained by 
matching the reaction template subgraph corresponding to the 
reaction.

2.  Using only Bert's reaction–reaction self-attention weights:

First, the self-attention weight matrices extracted from 
Bert's encoder are inputted into the atom mapping algo-
rithm implemented in rxnmapper [52]. To determine the 
optimal layer and head configuration, a methodology sim-
ilar to that employed by Schwaller et al. [52] is adopted, 
using a dataset of 996 instances derived from the USPTO-
50K. Subsequently, the atom mapping procedure is applied 
to the validation set of the USPTO-Condition, wherein the 
self-attention weights of Parrot's encoder serve as a guiding 
mechanism. The reaction templates are extracted using 
rdchiral [55]. Following that, rdkit is utilized to execute 
subgraph matching on the reactions, enabling the identifi-
cation of indices associated with active atoms. Finally, a 
comparison is made between the indices of active atoms 
and the ground truth reaction center, upon which the OS 
and FPR are computed.

3.  Simultaneously using cross-attention weights and Bert's 
self-attention weights:

In this approach, we combine the cross-attention weights 
with the self-attention weights of the encoder to enhance 
the relevance between the attention mechanism and the 
reaction center. However, we adopt a stricter treatment for 
the cross-attention weights, and the calculation process is 
as follows:

The first part of the calculation process involves obtaining 
the indices of active atoms using the cross-attention mechanism, 
denoted as ActiveAtomIdxcross. It consists of 2 components: the 
first part is the same as Method 1, and the second part involves 
identifying the top-ranked atoms based on attention weights, 
where the value of “n” is optimized on the validation set.

The second part involves obtaining the indices of active atoms 
using the self-attention mechanism, denoted as ActiveAtomIdxcross. 
These indices are obtained through template matching, similar 
to the second method, where the template is marked by an 
atom mapping algorithm guided by the self-attention weights 
of Parrot's encoder and extracted using rdchiral [55].

Finally, the indices of active atoms obtained from the cross- 
attention mechanism and the self-attention mechanism are 

(2)

(3)TP = len(ActiveAtomIdx ∩ ReactionCenterAtomIdx)

(4)TP + FN = len(ReactionCenterAtomIdx)

(5)FP= len(ActiveAtomIdx � ReactionCenterAtomIdx)

(6)FP + TN = len(ActiveAtomIdx)

(7)OS =
TP

TP + FN

(8)FPR =
FP

FP + TN

(9)ArgMaxLayer,Head,k,C(OS − FPR)

(10)ActiveAtomIdx = AtomIdxTemplateMached

(11)

(12)ActiveAtomIdxself = AtomIdxTemplateMached

(13)
ActiveAtomIdx = ActiveAtomIdxcross ∪ AtomIdxTemplateMached
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merged to obtain the final indices of active atoms, represented 
as ActiveAtomIdx. The calculation of the OS and FPR for the 
obtained active atoms follows the same approach as Method 1. 
Seven parameters are optimized on the validation set: the con-
stant k, the ConditionType (C), the Head and Layer for the 
cross-attention part, the Head and Layer for the self-attention 
part, and the constant n.

The parameter optimization space and the optimal param-
eters for the 3 aforementioned parts can be found in the Section 
S2.6. The attention weights used for calculating active atoms 
are normalized separately for reactants and products.

Analysis of attention-based association between 
functional groups and RCs
Furthermore, we conducted further exploration of the cross- 
attention weights between chemical reactions and RCs to analyze 
the additional information contained within them, apart from 
the reaction center information. In the analysis described in 
this part, we first fragmented all molecules (reactants and prod-
ucts) from USPTO reaction records using BRICS [47], counted 
the number of occurrences for the fragments, and selected the 
most representative and important 103 substructures for anal-
ysis. Then, in the test set of USPTO-Condition, we counted the 
attention weights calculated by the model according to the 
substructure and then calculated the attention map according 
to the number of the hits of the substructure. The calculation 
goes as follows:

where A is the attention map matrix; i and j are the indices of 
substructure G (from reactants and products) and condition 
C, respectively; E is the number of times that substructure G is 
matched in the dataset; and ae is the average attention weight 
(by heads) connecting atom w to chemical context condition 
C (eth hit). n is the number of the atoms in substructure G. The 
results of this analysis can be found in Results. The detailed 
calculation process of the attention weight ae can be found in 
Section S2.3.
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Effective synthesis planning powered by deep learning (DL) can significantly accelerate the discovery of new drugs
and materials. However, most DL-assisted synthesis planning methods offer either none or very limited capability to
recommend suitable reaction conditions (RCs) for their reaction predictions. Currently, the prediction of RCs with a
DL framework is hindered by several factors, including: (a) lack of a standardized dataset for benchmarking, (b) lack
of a general prediction model with powerful representation, and (c) lack of interpretability. To address these issues,
we first created 2 standardized RC datasets covering a broad range of reaction classes and then proposed a powerful
and interpretable Transformer-based RC predictor named Parrot. Through careful design of the model architecture,
pretraining method, and training strategy, Parrot improved the overall top-3 prediction accuracy on catalysis, solvents,
and other reagents by as much as 13.44%, compared to the best previous model on a newly curated dataset.
Additionally, the mean absolute error of the predicted temperatures was reduced by about 4 °C. Furthermore, Parrot
manifests strong generalization capacity with superior cross-chemical-space prediction accuracy. Attention analysis
indicates that Parrot effectively captures crucial chemical information and exhibits a high level of interpretability in the
prediction of RCs. The proposed model Parrot exemplifies how modern neural network architecture when appropriately
pretrained can be versatile in making reliable, generalizable, and interpretable recommendation for RCs even when the
underlying training dataset may still be limited in diversity.
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