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Drug discovery is a lengthy, costly and complex process that 
plays a crucial role in human health and well-being1,2. At 
present, experimental assays3 remain the most reliable 

approach to screen compounds, but cost too much. Although many 
computational methods4 have been proposed to estimate molecular 
interactions and properties and improve drug discovery efficiency, 
it is still a tricky process.

Graph learning methods have the potential to improve drug 
discovery efficiency dramatically because of their ability to amplify 
insights available from existing drug-related datasets5. Using the 
insights to predict molecular interactions and properties6,7 is key to 
finding potential drug candidates from the vast chemical space with 
extremely fast speed and low cost. On the other hand, molecular 
generation8,9 based on the insights can more efficiently traverse the 
vast chemical space to find potential drug candidates. Accordingly, 
graph learning is becoming a rising area of interest within the field 
of drug discovery10.

However, the pursuit of high prediction performance on a limited 
number of existing datasets has crystallized their architectures and 
hyperparameters, making them lose advantage in repurposing to new 
data generated during drug discovery. In practice, researchers tend 
to crystallize, that is, select and optimize architectures and hyperpa-
rameters from a huge design space to achieve the best performance 
on a dataset11–13. This heavily limits repurposing to newly generated 
data, which tend to be increasingly complex14 in drug discovery. Most 
graph learning methods rely heavily on these architectures and hyper-
parameters to achieve their claimed state-of-the-art results, and if the 
author does not release these specific architectures and hyperparam-
eters, their claimed state-of-the-art results cannot be reproduced15.

Recently, a few works have been reported to address the crystal-
lization problem. MolMapNet introduced an out-of-the-box deep 
learning method based on broadly learning knowledge-based rep-
resentations to achieve reliable prediction performance on more 
datasets without human intervention7. A recent work also intro-
duced a neural architecture search-based method to design a neu-
ral architecture for any dataset of molecular property prediction 
automatically11.

In this Article we propose ‘graph learning-based adaptive 
machine’ (GLAM), a flexible method that can adapt to any data-
set and make accurate predictions without human intervention. We 
compared our proposed method with previously reported methods 
in terms of prediction performance, on a wide range of datasets. The 
results show that our proposed method can adapt to all tested data-
sets exceptionally well and obtain far better prediction performance 
than the other reported methods. We also investigated the robust-
ness and interpretability of our proposed method, and found that 
it was more robust than the other tested methods and can provide 
meaningful interpretability, making it a more reliable method.

Results
Method overview. Our method utilizes an automated pipeline 
to learn from datasets and build a predictor, as shown in Fig. 1. 
Previous graph learning methods16–21 rely heavily on human experts 
to design the architecture, set the model hyperparameters, select the 
optimizer and select the loss function. We creatively combine these 
four items and build a configuration space. Starting from this con-
figuration space, GLAM performs a series of processes to build a 
blended predictor, as shown in Fig. 2.
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We designed two general architectures, one for molecular interac-
tion and another for molecular property, as shown in Fig. 3. Each 
block in the general architecture is created with its own design space, 
as shown in Extended Data Fig. 1. These architectures take graphs, 
including molecular graphs and protein graphs, as input. A molec-
ular graph is constructed with atoms as nodes and bonds as edges. 
A protein graph is constructed with amino acids as nodes and con-
tact information calculated by RaptorX22 as edges. The architecture 
takes a molecular graph and protein graph as input when performing 
drug–target interaction tasks, two molecular graphs as input when 
performing drug–drug interaction tasks, and a single molecular 
graph as input when performing molecular property prediction tasks.

Adapt to datasets for high performance. GLAM is designed to 
adapt to any given dataset to obtain a high prediction performance. 
To investigate the adaptability and performance of our method, we 
compared its performance on 14 datasets with a range of repre-
sentative traditional methods7,16–20,23–25. The types of tested dataset 
include drug–protein interactions, drug–drug interactions, physi-
cal–chemistry property, bioactivity, pharmacokinetics and toxicity. 

Given that different splits of datasets produce different perfor-
mances, we let all methods share the same splits of datasets so as to 
obtain a fair evaluation. We also manually adjusted the architectures 
and hyperparameters of previously reported methods to achieve 
their best performance on two representative datasets. Finally, we 
ran benchmarks and analysed their adaptability and performance 
on these datasets.

Compared to all traditional methods, our proposed methods 
can adapt to datasets well and achieve promising prediction per-
formance, as shown in Tables 1 and 2 and Supplementary Table 1. 
GLAM thus establishes a new state of the art for both molecular 
interactions and properties prediction. Relative to the best scores in 
previously reported results, the proposed method achieved an aver-
age 18.7% decrease in prediction error on 14 datasets compared to 
the best of the traditional methods. In addition, GLAM can consis-
tently achieve the best scores without human intervention, whereas 
previously reported methods achieve uneven prediction perfor-
mances. GLAM is therefore poised to be a flexible, reliable and 
trustworthy method that works well across a wide range of activities 
in drug design.
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High robustness against molecular structure perturbation. The 
next issue to consider is robustness26, another essential indicator 
of good practice in method development. We assume that a robust 
predictor should not change its output greatly when a small pertur-
bation of structures that has little effect on the molecular property is 
applied. Natural perturbations can always affect a machine learning 
method, and may lead to a wrong result with serious consequences 
in some safety-sensitive domains (such as healthcare). Admittedly, 
the robustness of a graph learning method is also an essential issue.

To evaluate the robustness of our proposed method, we first 
introduced a principle termed property-slightly-affected structure 
perturbation (PASP), then built a real-world perturbed dataset  

following this principle from the PhysProp27 dataset. We then per-
formed a robustness experiment based on the dataset. More details 
are provided in the Methods.

Table 3 shows that GLAM is less affected by molecular structure 
perturbations and demonstrates higher robustness than the conven-
tional methods. We fed original molecules and perturbed molecules 
to the predictor and investigated the differences in the outputs to 
measure the effect score. Compared with conventional methods, 
our method is less affected by PASP than conventional methods on 
all three levels of PASP. The robustness of GLAM is most probably 
due to the model blending at the end of the pipeline. The main idea 
of blending is to train several models and draw a final prediction 
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Table 1 | Performance comparison on datasets of molecular interactions

Dataset ALDH1 eSR1_ant KAT2A MAPK1 BindingDB Parameters 
adjust onMetrics AUC (s.d.) [higher is better]

Glide (SP) 0.607 (−) 0.590 (−) 0.474 (−) 0.592 (−) – –

Glide (XP) 0.582 (−) 0.540 (−) 0.441 (−) 0.579 (−) – –

RFScore-VS 0.556 (−) 0.562 (−) 0.511 (−) 0.640 (−) – –

DGraphDTA 0.679 (0.007) 0.603 (0.022) 0.633 (0.017) 0.654 (0.020) 0.914 (0.027) ALDH1

0.673 (0.013) 0.610 (0.011) 0.599 (0.032) 0.665 (0.031) 0.921 (0.023) BindingDB

TransformerCPI 0.694 (0.008) 0.590 (0.010) 0.633 (0.022) 0.683 (0.008) 0.926 (0.017) ALDH1

0.665 (0.008) 0.616 (0.032) 0.650 (0.042) 0.662 (0.012) 0.937 (0.016) BindingDB

GLAM 0.761 (0.006) 0.666 (0.012) 0.709 (0.033) 0.730 (0.016) 0.954 (0.008) None

(1) These datasets follow the splits of previous works. ALDH1, ESR1_ant, KAT2A and MAPK1 were released with official splits that are unbiased. BindingDB was split by the authors of TransformerCPI. (2) 
Glide44 docking scores were obtained on Schrödinger version 2015 with the precision of SP and XP. (3) RFScore-VS is a novel Random Forest-based scoring function for virtual screening (VS) that predicts 
binding affinity. The RFScore-VS features for the datasets were calculated by the Open Drug Discovery Toolkit (ODDT) Python package, and model training was implemented by the scikit-learn Python 
package. (4) DGraphDTA16 and TransformerCPI24 were implemented from their open-source code. Their hyperparameters were adjusted to obtain the best performance. (5) All deep learning methods were 
run with three different split seeds, then we took the average score and the s.d. (in parentheses). (6) The bold entries are the best results. (7) In this table, the ensemble size used for GLAM is 3. (8) The 
benchmarks used only single-target datapoints for the training process on ALDH1, ESR1_ant, KAT2A and MAPK1. AUC, area under the curve.
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from averaging. So, perturbing the molecular structure may affect 
the individual predictors but not the blended model.

Interpretation cases. To better understand the predictors generated 
by GLAM, we investigated its decision-making process and inter-
preted its learned knowledge. In the past, most machine learning 
models have been considered as black boxes. Previous works have 
adopted attention mechanisms20,28,29 to aid interpretation of models. 
Here we explain the model from the hidden states by averaging and 
visualizing it, thus directly utilizing the information provided by the 
models in the predictor, as shown in Extended Data Fig. 2.

Extended Data Fig. 2a presents some case studies of solubility 
prediction, which are consistent with the intuition of chemists. 
Generally, hydroxyl and amino groups are considered to be more 
hydrophilic, and alkyl and halogen groups are considered to be 
more lipophilic. We selected and visualized some representative 
molecules from the PhysProp dataset. The atoms in the hydrophilic 
group tend to be bluer in our visualization, which means their 
weights are closer to 1. Meanwhile, the atoms in the lipophilic group 
tend to be redder in our visualization, which means their weights 
are closer to −1. These observations are consistent with the intuition 
of chemists, indicating that the models in the predictor can detect 
essential atomic groups with clear interpretability of their solubility.

In the same way, we also visualized some drug–drug interaction 
identification cases, as shown in Extended Data Fig. 2b. We consid-
ered the interactions between sidenafil/udenafil and nitrates (nicor-
andil/isosorbide dinitrate) as cases. These were combined into four 
pairs of drug–drug interactions and fed into models in the predic-
tor to visualize the decision process. (Typically, sildenafil/udenafil 
can selectively inhibit phosphodiesterase type 5 (PDE5) targets in 
the human body. The N-methyl groups in the pyrazolopyrimidone 
rings of sildenafil/udenafil are important for the activity and selec-
tivity of PDE5. For these reasons, combining sildenafil/udenafil 
with nitrate drugs may lead to serious drug-drug interactions. As 
a result, the two kind of drugs may have interactions when they 
are combined.) The visualization results show that the models in 
the predictor pay more attention to the nitrates of isosorbide dini-
trate and nicorandil, and more attention to the N-methyl groups 
of sildenafil and udenafil. Accordingly, our visualization results 
are consistent with previous findings for these drug interactions,  

indicating that the models in the predictor can provide deep insights 
into molecular interactions.

Ablation studies. Time consumption and resource cost. We anal-
ysed the time consumption and resources costs of GLAM and other 
methods, as shown in Supplementary Table 2. We analysed mul-
tiple aspects, including computing time, computing device, train-
ing details and dataset size. From the comparison, GLAM costs 
~10 times more in terms of time consumption and four times more 
resources. We believe that these computing resources and time are 
worth it for the high performance achieved.

Preferences analysis. The preferences of GLAM may lead to ideas 
for the design of new methods, so we analysed the preferences of 
GLAM in multiple configuration items, as shown in Supplementary  
Table 3. These analyses were performed on three representative 
datasets: ESOL, BBBP and Tox21. GLAM prefers the global pool 
method and Adam optimizer on all tested datasets. In addition, 
GLAM may prefer message-passing networks (MPNs) on small 
datasets and prefers complex cores on bigger datasets for the choice 
of message-passing cores. On the choice of message-passing steps, 
GLAM may prefer bigger steps on bigger datasets.

Ensemble size. It is well known that ensembling models can create 
better predictors. We designed and conducted two experiments 
to investigate the effect of ensemble size on performance and 
robustness, as shown in Table 3 and Supplementary Table 4. From 
Supplementary Table 4, we can see that the performance improved 
as the ensemble size increased from 1 to 3, and remained stable from 
3 to 7. On the other hand, we can see that a bigger ensemble size, 
from 1 to 7, always brings less effect from PASP, as shown in Table 3.  
We also tested many ensembled competing graph models, such 
as 3*MPNN and GCN + GIN + MPNN. Their performance and 
robustness improved, but were still not as good as those of GLAM.

Comparison with Auto-Sklearn30 and Auto-Gluon31. It is now 
common to feed an automated machine learning method30,31 with 
structured data to obtain an excellent predictor. Auto-Sklearn and 
Auto-Gluon are well-known examples. However, we cannot make a 
fair comparison with them because they are very different in terms 

Table 2 | Performance comparison on datasets of molecular properties

Task Physical chemistry Bioactivity Pharmacokinetics Toxicity Parameters 
adjust onDataset eSOL Lipophilicity FreeSolv BACe BBBP SiDeR Tox21 ToxCast

Metrics R.m.s.e. (s.d.) [lower is better] AUC (s.d.) [higher is better]

GCN 1.017 (0.064) 0.807 (0.044) 2.307 (0.147) 0.772 (0.050) 0.830 (0.057) 0.619 (0.028) 0.762 (0.026) 0.678 (0.007) ESOL

1.056 (0.096) 0.799 (0.062) 2.858 (0.524) 0.797 (0.018) 0.792 (0.083) 0.612 (0.030) 0.752 (0.030) 0.663 (0.024) BACE

GAT 1.079 (0.080) 0.925 (0.031) 2.491 (0.465) 0.716 (0.033) 0.815 (0.067) 0.606 (0.053) 0.769 (0.033) 0.675 (0.013) ESOL

1.188 (0.058) 0.834 (0.037) 2.343 (0.272) 0.759 (0.019) 0.842 (0.042) 0.613 (0.023) 0.713 (0.022) 0.687 (0.017) BACE

GIN 0.704 (0.078) 0.948 (0.058) 2.662 (0.289) 0.812 (0.032) 0.858 (0.035) 0.595 (0.031) 0.793 (0.026) 0.671 (0.019) ESOL

0.742 (0.058) 0.864 (0.044) 2.098 (0.272) 0.831 (0.040) 0.875 (0.019) 0.605 (0.040) 0.732 (0.019) 0.672 (0.016) BACE

MPNN 0.755 (0.077) 0.769 (0.031) 1.897 (0.092) 0.820 (0.047) 0.831 (0.036) 0.626 (0.038) 0.752 (0.011) 0.697 (0.023) ESOL

0.884 (0.061) 0.825 (0.047) 2.038 (0.421) 0.816 (0.042) 0.816 (0.057) 0.641 (0.014) 0.803 (0.031) 0.686 (0.017) BACE

AttentiveFP 0.726 (0.032) 0.724 (0.030) 1.775 (0.392) 0.815 (0.072) 0.856 (0.023) 0.654 (0.027) 0.763 (0.022) 0.726 (0.020) ESOL

0.738 (0.059) 0.783 (0.036) 1.371 (0.446) 0.850 (0.017) 0.872 (0.024) 0.621 (0.033) 0.740 (0.039) 0.680 (0.024) BACE

MolMapNet 0.752 (0.040) 0.731 (0.012) 1.398 (0.312) 0.868 (0.094) 0.911 (0.013) 0.634 (0.015) 0.813 (0.021) 0.703 (0.025) None

GLAM 0.592 (0.036) 0.596 (0.025) 1.319 (0.346) 0.888 (0.033) 0.932 (0.015) 0.659 (0.017) 0.841 (0.010) 0.744 (0.008) None

(1) All datasets are split by scaffold. (2) GCN17, GAT18, GIN21 and MPNN19 are implemented with PyTorch Geometric45. AttentiveFP20 is implemented from its open-source code. Their hyperparameters have 
been adjusted to obtain the best performance. (3) All methods are run with three different split seeds, and then we take the average score and the s.d. (in parentheses). (4) The bold entries are the best 
results. (5) In this table, the ensemble size used for GLAM is 3. R.m.s.e., root-mean-square error.
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of their accepted data and objective optimization. Auto-Sklearn and 
Auto-Gluon take structured data (images and so on) as input and 
optimize independent machine learning models with hyperparame-
ters. GLAM takes multiple unstructured data (double/single molec-
ular graphs) as input and optimizes configurations consisting of 
architectures, hyperparameters, optimizers and losses. Despite this, 
we processed the molecules into structured data (molecular finger-
prints32) and fed them to AutoMLs so that we could make a com-
parison with GLAM, as shown in Supplementary Table 5. Although 
their performance is not as good as that of GLAM, they have a con-
siderable advantage in their computational speed and cost.

Discussion
We have shown that GLAM can adapt well to all tested datasets 
and make accurate predictions automatically. In the past, adapt-
ability to new data has largely been ignored, as researchers have 
addressed almost all their attention to achieving a high prediction 
performance. Our well-designed method can serve as a reliable 
method to predict molecular interactions and properties with high 
adaptability, prediction performance, robustness and interpretabil-
ity. Furthermore, the automated pipeline of our proposed method 
enables more researchers, even those who lack machine learning 
experience, to make full use of the power of machine learning. 
These advantages of our proposed method will greatly increase the 
acceptance of machine learning-aided drug discovery.

Limitations and frontiers
Adaptive feature input can help the models in our proposed method 
to extract important and sufficient representations. In this Article 
we only describe the graph model with basic node features, such 
as atomic/residual number. Adaptive feature input can be of great 
help in some particular prediction jobs. Adding feature decisions 
to the configuration space might improve our proposed method.  

A strategy that provides neither too little information nor too much 
redundant information would contribute greatly to the representa-
tion extraction process.

A more intelligent hyperparameter optimization algorithm built 
on multi-graph cards may increase the configuration search effi-
ciency. The current version of GLAM uses a basic optimizer based 
on random search. If a more intelligent optimizer is embedded into 
GLAM, it will help GLAM find ideal configurations in less time.

Outlook
Our method is expected to advance and evolve automated drug 
design1,33. Recent advances, such as chemical retrosynthesis predic-
tions34,35 and molecular generations36–38, have laid the foundation for 
an automated drug design pipeline in the future. Automated drug 
design or semi-automatic drug design will become a trend. The pro-
posed method can serve as a predictor generator that will contribute 
to automated drug design. For further applications, our proposed 
method can be repurposed to more scientific discovery fields, such 
as agrochemicals and materials design.

Methods
Details of datasets. We used LIT-PCBA39, BindingDB40 and DrugBank41 to 
evaluate our proposed method for molecular interaction prediction. From 
LIT-PCBA we selected four datasets of representative proteins based on the 
number of positive and negative samples. We used datasets in MoleculeNet42 to 
evaluate the proposed method for molecular property prediction. MoleculeNet42 is 
a set of benchmarking datasets for molecular machine learning that can be used to 
achieve a fair performance comparison.

LIT-PCBA is a virtual screening dataset consisting of 14 targets, 7,844 
confirmed active and 407,381 confirmed inactive compounds39. The BindingDB 
dataset contains 39,747 positive examples and 31,218 negative examples from a 
public database40. DrugBank includes 1,850 approved drugs with 221,523 drug-drug 
interaction (DDI) positive labels41. The Blood–Brain Barrier Penetration (BBBP) 
dataset contains 2,053 molecules and their permeability properties42. SIDER is 
a database of marketed drugs and adverse drug reactions, grouped into system 
organ classes for 1,427 approved drugs42. BACE is a database consisting of binding 
results for a set of inhibitors of human β-secretase 1 with 1,522 compounds42. Tox21 
contains qualitative toxicity measurements for 8,014 compounds on 12 different 
targets, including stress response pathways and nuclear receptors42. ToxCast is 
another toxicity database that contains qualitative results from 617 experiments on 
8,615 compounds42. The Free Solvation Database (FreeSolv) provides experimental 
and calculated hydration free energies of 643 small molecules in water42. ESOL 
is a small dataset consisting of water solubility data for 1,128 compounds42. 
Lipophilicity is a dataset that contains experimental results of octanol/water 
distribution coefficient (logD at pH 7.4) of 4200 compounds42. PhysProp consists of 
14,176 molecules and their corresponding log P values27.

Configuration space. The configuration space of GLAM has two parts: 
architecture decisions and training decisions. The architecture decisions decide 
how to build the architecture of a model. The general architectures of pairs of 
molecules and single molecules contain eight and four blocks with their own 
independent design spaces, respectively, as shown in Fig. 1. The training decisions 
decide how to train the model, including batch size, number of epochs, type of 
loss, type of optimizer, learning rate, reduction of learning rate, reduction of the 
patience of learning rate and early-stop patience.

Graph learning in architectures. Given a molecular graph G with xi denoting 
node features of node i and eji denoting edge features from node j to node i, the 
feedforward block can be described as

hi = fnn(xi) (1)

where hi denotes the hidden node features and fnn a feedforward neural network. 
The message-passing block can be described as

h′i = fu

(

hi,
∑

j∈Ni

fi(hj, eji)
)

(2)

where fu denotes the update function and fi the interaction function. The output 
properties p are transformed by the global pooling block and the final feedforward 
block can be described as

p = fnn
(

fpool
(

h′i
))

(3)

where fnn denotes a feedforward neural network and fpool the global pooling layer.

Table 3 | effect score of the molecular structure perturbation 
test

Method effect score (s.d.) [lower is better]

Level 1 Level 2 Level 3

GCN 0.385 (0.161) 0.712 (0.169) 0.997 (0.183)

3*GCN 0.288 0.543 0.740

GAT 0.388 (0.055) 0.615 (0.087) 0.943 (0.145)

3*GAT 0.245 0.394 0.634

GIN 0.312 (0.017) 0.526 (0.039) 0.764 (0.015)

3*GIN 0.249 0.435 0.673

MPNN 0.315 (0.014) 0.518 (0.054) 0.750 (0.048)

3*MPNN 0.272 0.457 0.679

GCN + GAT + GIN 0.290 0.524 0.674

GCN + GAT + MPNN 0.290 0.507 0.652

GCN + GIN + MPNN 0.280 0.518 0.640

GAT + GIN + MPNN 0.256 0.428 0.610

GLAM (best, n = 1) 0.290 (0.010) 0.493 (0.074) 0.656 (0.118)

GLAM (n = 2) 0.276 (0.025) 0.468 (0.080) 0.617 (0.127)

GLAM (n = 3) 0.259 (0.004) 0.418 (0.069) 0.581 (0.097)

GLAM (n = 5) 0.220 (0.047) 0.368 (0.020) 0.513 (0.060)

GLAM (n = 7) 0.200 (0.058) 0.353 (0.013) 0.502 (0.018)

(1) All baselines above are implemented with PyTorch Geometric45, and their hyperparameters 
have been manually adjusted for several rounds. (2) The losses between the ground-truth labels P 
and the predicted labels P′ of level 1, 2 and 3 perturbated test sets are 0.0624, 0.0593 and 0.0578, 
respectively.
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Design spaces of blocks. Each block is created with its own design space, as shown 
in Extended Data Fig. 1. The feedforward block consists of a normalization layer, 
a dropout layer, a feedforward layer and an activation layer. The normalization 
layer, dropout layer and activation layer can be chosen to be empty in this block. 
Most parts of the message-passing block are the same as in the feedforward block, 
but the core is changed to a message-passing layer with a choice of five possible 
types. The fusion block is designed to extract information on a pair of interacting 
molecules. The global pool block consists of one layer of graph pool layer with a 
choice of three types of pooling layer.

Preparing for both molecular interactions and properties. We prepare two 
general architectures for both molecular interactions and properties prediction, 
as shown in Fig. 3. The pair-graph architecture for molecular interactions accepts 
a pair of molecules as input, and outputs their interaction. The single-graph 
architecture for molecular properties accepts a molecule as input and outputs one 
or multiple properties of the molecule. Some essential tasks in drug discovery 
relate to molecular interactions, such as protein–ligand interactions. All molecules 
are processed to graphs with basic node attributes as input of the architectures. 
Small molecules are processed into atom-level molecular graphs, where the edge 
information is provided by chemical bonds. Proteins are processed into residue-level 
graphs, with the edge information provided by contact maps predicted by RaptorX22.

Multi-graph-cards parallel. GLAM works in parallel with multiple graphics 
cards. The most time-consuming parts of a graph learning process are the training, 
validation and testing. The proposed method contains lots of independent graph 
learning processes. We let them work in parallel to fully utilize the computational 
resources. In detail, we build a queue and insert all these processes, as jobs, into it. 
If a graphics card is free, a job will pop up and be assigned to the card until all the 
jobs have popped up.

Robustness experiments. This experiment aims to investigate the robustness of 
a predictor based on the perturbed dataset. If the prediction of a method is not 
greatly affected by a slight perturbation that has little effect on the molecular 
property, the method may be a robust method.

Given a molecule set M with ground-truth properties Q and a trained predictor 
f, we predict the property set P by equation (4), and the training and validation sets 
are used to train and save weights to obtain our predictor f:

P = f(M) (4)

Given the perturbed test set M′ with properties Q′, we predict the property set 
P′ by equation (5):

P′ = f
(

M′
)

(5)

We estimate the robustness of the predictor by calculating the error between 
the predicted value P of the original molecule set M and the predicted value P′ of 
the perturbed molecule set M′. Given a distance function L, L(P, P′) represents the 
distance between P and P′. If L(P, P′) > L(Q, Q′), the predictor is not robust, that 
is, the perturbation will have a big impact on the performance of the predictor. 
If L(P, P′) ≤ L(Q, Q′), the predictor is robust and the perturbation will have less 
impact. We define a perturbation effect score with equation (6), where the Δ 
represents the perturbation effect score of method f:

∆ = L
(

P, P′
)

− L
(

Q, Q′
)

(6)

In this work, we use the following settings. We picked out the original set M 
(N = 2,362) and the perturbed set M′ (N = 2,362, 2,362, 2,362 for level 1, 2, 3) from 
all 14,176 molecules, and we use the r.m.s.e. as our loss function L.

PASP. This principle is used to determine an ideal perturbed molecule set with 
small perturbations that do not significantly affect the properties. We need to 
ensure two conditions are met to let PASP work. The first condition is that the 
change in property should be within an acceptable range, and the second condition 
is that the molecular structures do not change much.

Given a molecule pair {xi, x′i }, their properties are {qi, q′i }. Assume their 
molecular fingerprint similarity is S(xi, x′i ) ∈ [γmin, γmax), where [γmin, γmax) is a 
predefined similarity range, and the difference of their properties is L(qi, q′i ) < ϵ2, 
where ε1 is a predefined acceptable value, then the molecular pair is an ideal 
perturbed molecule pair that follows the principle.

Building the perturbed dataset. In this experiment we build a perturbed dataset 
based on real-world datapoints by searching and selecting from the PhysProp27 
dataset for robustness estimation. The PhysProp dataset consists of 14,176 
molecules structures and their corresponding properties (log P). We compare all 
potential molecule pairs, calculate the fingerprint similarity of all molecules and 
their difference in log P, and pick out molecule pairs that meet the following two 
conditions. The first condition is that the difference in the log P of the molecule 
pairs should be less than 0.2, and the second condition is that the molecular 
fingerprint similarity should be in the range of 0.3–1.0. We then divide these 

molecule pairs into three levels (range 0.8–1.0, 0.5–0.8 and 0.3–0.5, marked as 
levels 1, 2 and 3), pick out those molecules that exist in all three levels, and build 
the test set (N = 2,362) with them. The corresponding molecules in the pairs of 
three levels are separated to build the perturbed test sets (N = 2,362, 2,362 and 
2,362) of the three levels. All remaining molecules are used to build the training set 
(N = 7,684) and test set (N = 2,561) to train the models and save the model weights.

Node-level interpretation. We extract the output of the message-passing 
block of the best predictor generated by GLAM, which is a matrix 
X = {xij|1 ≤ i ≤ N, 1 ≤ j ≤ M}, where N is the number of atoms and M the 
dimension of the outputs. We then obtain the weight W = {wi | 1 ≤ 1i ≤ N} of 
each atom according to wi = 1

M
∑M

j=1xij, and visualize the molecule with  
the weights. In some cases, the weight wi may be scaled to [−1, 1] or [0, 1].

Data availability
All data used in this paper are publicly available and can be accessed as follows: 
LIT-PCBA39 (ALDH1, ESR1_ant, KAT2A, MAPK1), BindingDB40, DrugBank41, 
MoleculeNet42 (ESOL, Lipophilicity, FreeSolv, BACE, BBBP, SIDER, Tox21, 
ToxCast) and Perturbed PhysProp43.

Code availability
All code of GLAM is freely available at https://github.com/yvquanli/GLAM with an 
MIT licence. The version used for this publication is available at https://doi.org/ 
10.5281/zenodo.637116443.
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Extended Data Fig. 1 | Design space for blocks of the architectures. a, Feed-forward Block. It takes a tensor as input and outputs a tensor. Abbreviations 
and their full name correspond as follows: Norm(Normalization), ReLU(Rectified linear units), CeLU(Continuously differentiable exponential linear 
units). b, Message Passing Block. It takes a graph as input and outputs a graph. Abbreviations and their full name correspond as follows: GCN(Graph 
convolutional networks), GAT(Graph attention networks), MPN(Message-passing neural networks), Tri-MPN(Triplet message-passing neural networks), 
Light Tri-MPN(Light triplet message-passing neural networks). c, Fusion Block. It takes a graph as input and outputs a tensor. Dot means the dot 
multiplication operation. d, Global Pooling Block. It takes a graph as input and outputs a tensor.
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Extended Data Fig. 2 | Cases of node-level interpretation. a, Case studies of solubility prediction. The atoms in the hydrophilic group tend to be bluer 
in our visualization, which means their weights are closer to 1. In contrast, the atoms in the lipophilic group tend to be redder in our visualization, which 
means their weights are closer to −1. b, Case studies of drug-drug interactions. The visualization results show the models in predictor pay more attention 
to the nitrates of isosorbide dinitrate and nicorandil, and pay more attention to the N-methyl of sildenafil and udenafil.
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