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Abstract

Motivation: Computational methods accelerate drug discovery and play an important role in biomedicine, such as molecular
property prediction and compound-protein interaction (CPI) identification. A key challenge is to learn useful molecular
representation. In the early years, molecular properties are mainly calculated by quantum mechanics or predicted by
traditional machine learning methods, which requires expert knowledge and is often labor-intensive. Nowadays, graph
neural networks have received significant attention because of the powerful ability to learn representation from graph data.
Nevertheless, current graph-based methods have some limitations that need to be addressed, such as large-scale
parameters and insufficient bond information extraction. Results: In this study, we proposed a graph-based approach and
employed a novel triplet message mechanism to learn molecular representation efficiently, named triplet message
networks (TrimNet). We show that TrimNet can accurately complete multiple molecular representation learning tasks with
significant parameter reduction, including the quantum properties, bioactivity, physiology and CPI prediction. In the
experiments, TrimNet outperforms the previous state-of-the-art method by a significant margin on various datasets.
Besides the few parameters and high prediction accuracy, TrimNet could focus on the atoms essential to the target
properties, providing a clear interpretation of the prediction tasks. These advantages have established TrimNet as a
powerful and useful computational tool in solving the challenging problem of molecular representation learning.
Availability: The quantum and drug datasets are available on the website of MoleculeNet: http://moleculenet.ai. The source
code is available in GitHub: https://github.com/yvquanli/trimnet. Contact: xjyao@lzu.edu.cn, songsen@tsinghua.edu.cn
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Introduction

Computational methods have been used in bioinformatics and
cheminformatics studies for nearly three decades [8, 14, 16, 32,
34, 35, 37, 38, 42, 49], such as predicting molecular property
and identifying the interactions between drugs/compounds and
their targets’ protein. In the early years, quantum mechanics
[19], such as the density functional theory (DFT), were used to
determine the molecular structure and calculate properties of
interest for a molecule. However, the quantum computational
method usually consumes tremendous computational resource
and takes hours to days to calculate the molecular proper-
ties [37], which hinder their applications to the fields of high-
throughput screening. For example, it would be unrealistic to
estimate each compound for drug discovery, as the number of
potential drug-like compounds is estimated up to 10%. Several
traditional machine learning methods are proposed to acceler-
ate the in silico predictions for molecular properties [3, 18, 25,
49], such as support vector machines [7], decision trees [2, 45],
random forest, k-nearest neighbors and naive Bayesian methods
[10, 39]. These methods significantly shorten the prediction time
and provide comparable performance for molecular search tasks
[49]. Nevertheless, machine learning methods rely on manually
extracted molecular features from molecular structures, and in
the meantime, their performance still needs to be improved.

In recent years, deep learning (DL) [27] has achieved excel-
lent performance in computer vision (CV) [17, 20] and natural
language processing [9, 50] (NLP) and many DL methods [11, 21,
29, 43, 44] are employed to boost the performance of molec-
ular property prediction. According to the forms of molecular
representation, these methods can be divided into sequence-
based and graph-based methods [26, 49]. Sequence-based meth-
ods usually employ convolutional neural networks (CNNs) or
recurrent neural networks to deal with the molecular sequence
representation, such as SMILES [52]. On the other hand, graph-
based methods take the molecular graph (represented by atom
features, bond features and adjacency matrix) as input and use
graph neural networks (GNNs) [41] to accomplish the prediction
task.

GNNs are the neural networks that perform features trans-
formations based on graphs. It can capture non-Euclidean infor-
mation and achieve impressive success in social networks, nat-
ural science, knowledge graphs and many other research areas
[57, 62]. Compared with sequence-based methods, GNNs learn
the representation over the molecular structure directly [23, 31,
40, 47, 48, 54, 60, 61]. MoleculeNet [56] has summarized the
performances of sequence-based and graph-based methods on
17 molecular property datasets, including quantum mechan-
ics, physical chemistry, biophysics and physiology datasets. The
results show that graph-based models surpass conventional
methods on 11/17 datasets. Typically, graph convolutional mod-
els and message passing neural network (MPNN) [13] achieved
the state-of-the-art performance on most datasets. Attention
mechanism [1, 15, 51], an effective method to compute repre-
sentations based on the element importance score, has been
widely applied to improve the performance in CV and NLP.
Recently, several researchers [46, 55, 58] have introduced the
attention mechanism into the MPNN architecture and achieved

excellent performance on molecular property predictions. For
example, Xiong et al. [58] developed attentive FP and achieved
the state-of-the-art predictive performance on most datasets in
MoleculeNet.

Usually, most MPNN methods [13, 55] need to map the edge-
feature vector into a matrix for applying linear transformation,
which brings a large number of parameters, on graph nodes.
Besides, most current attention-based graph methods [46, 55,
58] only aggregate the neighbor nodes’ information to update
node’s representation, which may lead to insufficient edge infor-
mation extraction. However, the bonds contain rich information
about molecular scaffolds and conformers, which is essential for
the molecular properties. Thus, a large amount of parameters
and insufficient extraction of edge information may seriously
hamper the models’ application and performance.

To address these issues, we proposed a novel triplet mes-
sage networks (TrimNet) to learn molecular representation effi-
ciently. Specifically, this approach explicitly drops the matrix
mapping of edge features and employs a triplet message mech-
anism to calculate message from atom-bond-atom information
and update the hidden states of neural networks. In this way,
TrimNet reduces the number of parameters and simultaneously
improves the extraction of the edge information. We evaluate
TrimNet on various molecular property predictive tasks, includ-
ing quantum properties, bioactivity, physiology and compound-
protein interaction (CPI). The experimental results indicate that
TrimNet achieves the new state-of-the-art performance on a
variety of datasets with a significant parameter reduction. In
addition, we have explored the interpretation of TrimNet and
found that TrimNet usually focuses on the atoms and the scaf-
folds essential for the target properties. These advantages indi-
cate that TrimNet can serve as a powerful and useful compu-
tational tool for solving the challenging problem of molecular
representation learning.

Methods

In this section, we introduce the datasets used in this study and
elaborate on our newly proposed model in detail.

Dataset

We evaluated the TrimNet model for four different molecular
properties, including quantum properties, bioactivity, physiology
and CPI. The benchmark datasets used in this work include
QM9, MUV, HIV, BACE, blood-brain barrier permeability (BBBP),
Tox21, ToxCast, SIDER, ClinTox, Human and C.elegan. Human
and C.elegan datasets are directly retrieved from Tsubaki et al.
[47], and other datasets are downloaded from the website of
MoleculNet [56].

QM9. For quantum property prediction tasks, we employed
QM9 dataset for evaluation, which includes 12 calculated
quantum properties for 134k molecules. We use the original
dataset of MoleculeNet [56], in which the unit of targets
€HOMO, eLUMO, A¢, U0, U, H, G is Hartree, the unit of target u is
Debye, the unit of target « is Bohr?, the unit of target R2 is Bohr?
and the unit of target Cv is cal/mol/K.
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Figure 1. Molecule and molecular graph.

MUV is a subset of PubChem BioAssay by applying a refined
nearest neighbor analysis. It contains 17 challenging tasks for
93 127 compounds, designed for validation of virtual screening
techniques.

HIV dataset, introduced by the Drug Therapeutics Program
AIDS Antiviral Screen, provides the ability to inhibit HIV replica-
tion for 41 127 compounds.

The BACE is a database that consists of binding results for a
set of inhibitors of human B-secretase 1.

Tox21 contains qualitative toxicity measurements for 8014
compounds on 12 different targets, including stress response
pathways and nuclear receptors.

ToxCast is another toxicity database providing toxicology
data for compounds based on virtual screening. The processed
collection in MoleculeNet contains qualitative results of 617
experiments on 8615 compounds.

SIDER is a database of marketed drugs and adverse drug
reactions, which grouped into 27 system organ classes.

ClinTox dataset contains qualitative data of drugs approved
by the FDA and those that have failed clinical trials for toxicity
reasons.

Human and C.elegan, created by Liu et al. [30], include
highly credible negative samples of compound-protein pairs
by using a systematic screening framework. Positive samples
of the datasets were retrieved from DrugBank 4.1 and Matador.
We used a balanced dataset with 1:1 of positive and negative
samples following Tsubaki et al. [47].

All molecules of datasets above are preprocessed into graphs
with nodes features, edge features and adjacency matrix with
RDKIT [24] as show in Figure 1. For QM9 dataset, we process
all the molecules in this dataset into fully connected molecular
graphs following Gilmer et al. [13]. It means that there is a
connection between all pairs of atoms, even if there is no bond
between them. For the rest dataset, the structure of molecule
graph was encoded according to their original adjacency matrix
and the node feature and edge features are identical to [58]. More
detailed information about node features and edge features can
be found in Supporting Information Tables 1 and 2.

Message phase

Gilmer et al. [13] have tried different message calculation func-
tions and found that the edge network achieved the best per-
formance. Nevertheless, this message calculation function has
a large number of parameters and high computational cost,

TrimNet | 3

which restricts its applicability in a broader context. Hereby, we
propose a triplet-attentive edge network as the message calcula-
tion function to boost the performance and reduce the compu-
tational cost. Our triplet-attentive edge network computes the
attention score by a multi-head triplet attention mechanism and
aggregates the neighbors’ information (including neighboring
nodes and edges) according to the attention. Specifically, given
the node features h* = {hj,hi,...,h{} and edge features e at t
time step, triplet-attentive edge network firstly map node pair
h;, h; and edge hidden state eg. to the same dimension D and then
concatenate them into a triplet and feed into a feed-forward
neural network according to

71! = LeakyReLU(u" [Whh§||wge§juwhh}]), (2)

where || represents concatenation, W, € RF**P? and W, e R?*P
are learnable weight matrices shared across all nodes and edges
(F1 and F2 are the dimensions of initial node features and edge
features), u € R® is also the learnable weight and LeakyReLU
stands for the LeakyReLU nonlinear function. To facilitate the
comparisons of coefficients across different nodes, we normal-
ize them across all choices of neighbor j using the softmax
function

Lt
efii
— @

aft! = softmax(r ') =
)]
Z,w, ev

i)

where A; is the set of neighbors for node i. Once obtained,
the normalized attention coefficients and the neighboring node
hidden states and edge hidden state are used to apply weighted
summation operation, to derive the message m; at each node:

m*t =" ol © Whhi © Weej, (3)
JeNi

where © represents element-wise multiplication. The attentive
edge network also employs multi-head attention to stabilize
the learning process of self-attention, that is, K independent
attention mechanisms execute the transformation of Equation
(3), and then their features are concatenated, resulting in the
following output feature representation:

mitt = I 3" o o Wikj o Wiej, @
JeNi

where || represents concatenation, afffl'k are the normalized
attention coefficients computed by the k-th attention mecha-
nism and W¥ is the corresponding weight matrix of input linear
transformation. Note that, in this setting, the final returned
output m!™* will consist of KF features (rather than F) for each
node. Then, TrimNet employs a gated recurrent unit (GRU) [6]
as the vertex update functions to fuse the previously extracted
message and the current integrated features and followed by a
layer normalization to stabilize the hidden state dynamics in
recurrent networks, which is computed by

hft! = LN(GRU(h{, m{?)). (5)

i

Note that hi** and h! share the same dimension. The mes-
sage phase integrate skip connection and performs the above
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computations for T times recurrently to derive the final repre-
sentation h! for each node i.

Readout phase

Based on the final updated nodes’ features h™ = h{,hl,... h],
we employed Set2Set networks proposed by Vinyals et al. [S1] as
the readout function to produce a graph-level embedding. To be
specific, Set2Set aggregates nodes features by different attention
weights and concatenate the aggregated features with history
information that is,

q: = LSTM(q;_4), (6)
i = softmax(h! q), (7)
N
Tt = Z“i,thiri (8)
i1
q; = qellre. )

The Set2Set performs the above computations for T times recur-
rently to obtain the final graph representation g}. Then, the
derived representation g3 was fed into a feed-forward neural
network to output the final prediction §.

Loss function

Given the final prediction y and the target labels y, the training
objective is to minimize the loss function. For prediction of
quantum mechanical property, the L1 loss was adopted as the
loss function

N
L==>"1Ji—yil. (10)
i=1

For the bioactivity and physiology prediction task, we
employed a weighted focal loss to deal with the data imbalance
problem

N

L=—"o(1- ) log), (11)

i=1

where « is a weighting factor in balancing out the importance
of positive and negative examples and y is the focusing param-
eter to adjust the rate at which the easy examples are down-
weighted. In our experiment, we set o = NETNCEGEsIAPES anq
y =2.

For CPI, we used cross entropy loss function (following Tsub-
aki et al. [47]):

L=— Zlog(jzi). (12)

Training details and hyperparameters

TrimNet were trained via the standard batch gradient descent
method with the error back-propagation algorithm. Specifically,
we used the optimization algorithm Adam [22] to update
the parameters. Two regularization techniques, including the
dropout and the weight decay, were employed to prevent the
potential overfitting problem. We trained a separate model for
each target on QM9 according to MPNN [13], and the rest datasets
with multiple prediction tasks are fit jointly. Our model was

implemented with the PyTorch and PyTorch geometric library
[12]. The training and testing processes were conducted with
V100 and TITAN Black graphic cards.

A grid search procedure was applied to obtain the optimal
hyperparameters for the TrimNet. The hyperparameters tuning
process involved the learning rate, the hidden size, the dropout
rate, the number of attention heads and the number of iteration
for the message phase. Finally, we reported the test performance
based on the selected hyperparameters for different datasets in
Supporting Information Table 3.

Results
The architecture of TrimNet

In this study, we proposed a DL approach employed a novel
triplet message mechanism to learn molecular representation
efficiently, named TrimNet. A molecule is represented by a graph
structure (G), which consists of atom features h; and bond fea-
tures ey. Formally, TrimNet has two phases of operation (the mes-
sage phase and readout phase), as shown in Figure 2. The mes-
sage phase contains a message calculation function M; based
on a multi-head triplet attention mechanism, a vertex update
functions U; and a layer normalization. The three components
work sequentially to update the hidden state h{ at each node at
each time step t. That is,

mi+t = Z M;(hi, hj, ey), (13)
JeNi
hit = LN(U, (h¢, mt*1)), (14)

where N represents the neighbors of node i, e; denotes the edge
between the nodeiand node j, LN is the layer normalization. The
N message phase blocks are stacked by skip connections.

Given the final representation derived from the message
phase, the readout phase leverage the readout function R to
compute the feature vector for the graph

y =R(h[|i € G). (15)
More detailed information can be found in Method section.

Molecular quantum properties prediction

Quantum mechanics is essential for understanding molecu-
lar structure and properties, which constitute a cornerstone of
chemistry and material discovery. However, the traditional DFT
method has high computational costs, so many DL methods,
such as MPNN [13] and attentive FP [58], have been developed
to accelerate the molecular property prediction and achieved
a impressive performance. Here, we focus on the QM9 dataset
[36], which consists of 12 quantum properties of 134k molecules
calculated by the DFT method to evaluate our TrimNet model.
To achieve a fair comparison, we feed the same features as
attentive FP into our TrimNet (denoted as TrimNet?). Table 1
shows that TrimNet significantly decreased the mean absolute
error (MAE). Compared with attentive FP, TrimNet decreased the
MAE on six properties (u,ZPVE,UO,U,H,G) by more than 80%
and on five properties (o, eHOMO, eLUMO, Ae, Cv) prediction tasks
by more than 17%. Finally, our model achieved the new state-
of-the-art on 12 out of 12 targets. Compared with attentive FP
and MPNN, TrimNet focuses more on utilizing the edge infor-
mation, as quantum properties depend sensitively on bonds,
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Figure 2. The architecture of TrimNet.

scaffolds and conformers. Besides, Section 3.7 has demonstrated
the importance of edge features as inputs. Therefore, emphasiz-
ing the edge information may bring excellent performance for
Triplet.

To further boost the performance, we feed another set of
features into TrimNet (denoted as TrimNet” ). Specifically, aim-
ing to utilize the edge information more fully, we added more
edge features, including distances, angles and some electronic
features of atom. As a result, TrimNet? outperformed TrimNet®
on 9 out of 12 tasks in terms of MAE. Besides, it should be noted
that the performance can be improved as the depth increased
(Section 3.7), but considering the computation cost and training
time, we employed the TrimNet model with a depth of three
blocks to perform the ablation studies on edge information and
layer normalization in Section 3.7. Overall, these results indi-
cate that TrimNet provides a promising representation learning
ability for predicting quantum mechanical properties.

Bioactivity and physiology prediction

While TrimNet achieved the state-of-the-art performance on the
prediction of quantum mechanical properties, we also applied
our model to tasks relevant for drug discovery. There are many
fundamental tasks for drug discovery, including the prediction
of bioactivity and physiology. To evaluate our model, we picked
several benchmark datasets from MoleculeNet (for more details,
see Methods). As recommended by MoleculeNet [56], we split

TrimNet | S

| Linear

Concat [ Multiply ]

[ Triplet Attention ] A m
Al 4 4
J I : _scale |

Concat

SN

[ Llnear] [ Linear] [ Linear]

T; ; €ij T ij

m;o i [©o
x; m;(o o
) @e O\ T; 60 /O
€ije
60

Message calculation Hidden state updation

HIV, BACE and BBBP datasets by scaffold splitting. The remain-
ing datasets were randomly split according to the molecular
substructure, with 8:1:1 for training, validation and test. The
node and edge features of molecular graph adopted in this work
are identical to that of attentive FP, in order to provide a fair
comparison.

Table 2 summarizes the performance of TrimNet and the
previous best models on the drug-related benchmark dataset.
MUYV, HIV and BACE describe the effects of molecules toward dif-
ferent targets, which is fundamental for virtual screening in drug
discovery. Our model achieves the state-of-the-art performance
on MUV and BACE dataset in terms of the ROC metric. The phys-
iology datasets indicate the effects of chemical compounds in
living bodies, including toxicities (Tox21, Toxcast, ClinTox), BBBP
and adverse effects (SIDER). TrimNet outperforms the previous
best models on the Tox 21, SIDER and ClinTox datasets. Overall,
TrimNet achieves the state-of-art performance on six out of eight
datasets relevant to drug discovery. These results convincingly
reveal TrimNet’s potential to master molecular representation
learning for drug discovery.

Prediction of CPIs

Identifying interactions between compounds and proteins play
an essential role in virtual screening for drug discovery. Various
machine learning and DL methods have been developed and
achieved excellent performance for CPI prediction [5, 33, 53].
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Table 1. Comparison of prediction mean absolute error on QM9dataset

Model Name ECFP* CM* DTNN* MPNN* Attentive FP*  TrimNeta TrimNetb
Depth - - - 1 2 3 3
Params - - c- - 1683k 56k 56k
TASKS i 0.602 0.519 0.244 0.358 0.451 0.414 0.0741
a 3.1 0.85 0.95 0.89 0.492 0.299 0.216
eHOMO 0.0066 0.00506 0.00388 0.00541 0.00358 0.00290 0.00226
eLUMO 0.00854 0.00645 0.00513 0.00623 0.00415 0.00300 0.00192
Ae 0.01 0.0086 0.0066 0.0082 0.00528 0.00433 0.00336
R2 125.7 46 17 28.5 26.839 24.98 2.178
ZPVE 0.01109 0.00207 0.00172 0.00216 0.00120 0.000233 0.000140
uo 15.1 2.27 2.43 2.05 0.898 0.0681 0.0927
U 15.1 2.27 2.43 2 0.893 0.0631 0.0861
H 15.1 2.27 2.43 2.02 0.893 0.0638 0.0774
G 15.1 2.27 2.43 2.02 0.893 0.0791 0.0717
Cv 1.77 0.39 0.27 0.42 0.252 0.118 0.0715

[#] The results of these models are taken from attentive FP [58]. [a] This model uses the same features as attentive FP [58]. [b] This model uses another set of features

and use fully connected molecular graphs with hydrogenation added. Details of the features can be found in Support Information Table 1.

Table 2. The performance of TrimNet models on the drug discovery-related dataset

Category Dataset Compounds Tasks Task type Split Metric Previous best TrimNet
Bioactivity MUV 93127 17 Classification Random AUC Graphconv+dummy: 0.851
0.845%

HIV 41127 1 Classification Scaffold AUC Attentive FP: 0.832 0.804
BACE 1513 1 Classification Scaffold AUC RF: 0.867° 0.878

Physiology BBBP 2053 1 Classification Scaffold AUC Attentive FP: 0.920 0.850
Tox21 7831 12 Classification Random AUC Attentive FP: 0.858 0.860
ToxCast 8575 617 Classification Random AUC Attentive FP: 0.805 0.777
SIDER 1427 27 Classification Random AUC Attentive FP: 0.637 0.657
ClinTox 1478 2 Classification Random AUC Attentive FP: 0.940 0.948

[a] @ This model are referenced from Li et al. [29]. [b] ® This model are referenced from attentive FP. [58].

Table 3. Performance on CPI prediction

Dataset Model Precision Recall AUC

Human GNN-CNN 0.923 0.918 0.970
TrimNet-CNN 0.918 0.953 0.974

C.elegans GNN-CNN 0.938 0.929 0.978
TrimNet-CNN 0.946 0.945 0.987

Tsubaki et al. [47] proposed a novel framework that employed
GNN and CNN for CPI predictions to learn the representation of
compounds and protein sequence, which significantly outper-
formed existing methods. Here, we adapted their algorithm and
replaced their GNN part with our TrimNet to evaluate the effec-
tivity of TrimNet on CPI prediction. To ensure a fair comparison,
we experimented with the same parameter setting and the same
dataset. Table 3 shows that our model outperforms Tsubaki’s
model on the Human and C.elegans datasets. The results show
that replacing GNN with TrimNet make the DTI prediction more
accurate.

TrimNet uses fewer parameters in comparison
to previous best models

Besides the impressive performance on molecular representa-
tion learning, another remarkable achievement of TrimNet is
the significant reduction of the number of the parameters. The

original MPNN proposed by Gilmer et al. [13] and recent atten-
tive FP [58] has achieved excellent results on quantum prop-
erty prediction but suffers from a large number of parameters,
which limited their applications in a broader context. Table 1
shows that our TrimNet model uses only 1/30 of attentive FP
parameters in quantum property prediction tasks. And on drug
discovery-related datasets, TrimNet also significantly reduced
the parameters, as shown in Figure 3. The parameters of MPNN
and attentive FP mainly come from the message function, in
which the edge vector needs to be mapped to a D x D matrix
(D represents the hidden size). In contrast, we employed the
triplet attention and element-wise multiplication (Equations (2)
and (3)) to avoid matrix mapping and decrease the parameters
effectively. Due to less memory consumption, this lightweight
advantage clearly implies that TrimNet should be more readily
applicable to large graph databases.

TrimNet provides interpretability

As TrimNet performs well on a variety of task predictions, we
investigate the model’s interpretability, that is, how it arrives ata
successful prediction. Usually, many DL methods tend to behave
like a black box, the lack of explanation limits their applications,
especially in some medical applications. Aiming to rationalize
the TrimNet model, we visualized some molecules based on
atomic attention weights. The readout phase of TrimNet, Set2Set
[51] network, learns the final molecular representation by aggre-
gating the atoms’ information recurrently with atomic attention
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weights. As an indispensable part of the network, atomic atten-
tion weights in Set2Set may provide interpretability from input
molecules to output properties.

We extract the atomic attention in the Set2Set network for
molecular visualization. To be specific, we detect the max-
weight atom according to the attention and highlight the atom
and its first-level neighbors (on the molecules drawn using
RDKIT). Because of the message passing mechanism according
to Section 2.2, its first-level neighbors contribute significantly
and are considered for highlighting. Finally, in the toxicity
prediction task on ClinTox and Tox21 datasets, we found that
TrimNet model may pay more attention to atomic groups that
may cause toxicity, such as aniline scaffold or carboxylic acid,
as shown in Figure 4A and B. These visualization results show
that our model detects essential atomic groups with a clear
interpretability.

Ablation studies

Edge information. In the attentive edge network of our TrimNet,
edge features are employed to calculate the attention weights,
then element-wise multiplied by neighbor node representation
and aggregated by the obtained weight. To evaluate the impor-
tance of edge features, we removed all edge features (using only
node features) from the inputs and compared their performance.
The experimental results indicated that the performance deteri-
orates dramatically after deleting the edge features, as shown in
Table 4. To further validate the role of edge information, we only
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removed the edge representation in the element-wise multipli-
cation (Equation (3)) but kept it in the process of attention score
calculation (Equations (1) and (2)). The modified TrimNet again
suffers a drop in performance. These results indicate that edge
features play essential roles in the tested molecular properties.

Layer normalization. In TrimNet, we creatively employed
layer normalization in every step of the message passing phase
of the model to reduce gradients vanishment and explosion
(Equation (5)). To the best of our knowledge, this is the first
time layer normalization has been incorporated into MPNNs.
Here, the layer normalization was removed to study the effect
that this had on the performance of TrimNet. Table 4 shows
that MAEs of TrimNet on the QM9 dataset incur significant
increase when layer normalization are removed. In fact, the
MAE rises more than 90% for five tasks, which suggests that
the layer normalization is a valuable addition for the MPNN
architecture.

Depth. Here, we investigate the effects of the depth of the
message passing phase on TrimNet’s performance. Table 5
displays the performance comparison of triplet with different
depths on the QM9 dataset. As the depth increased, the
performance improved. This positive trend of continuing
improvement was observed on half of all tasks even when the
depth increased to 10. These results indicate that TrimNet with
more layers has a greater learning capacity, while most of GNNs
are limited to very shallow models, usually no deeper than two
or three layers [28, 59, 62]. TrimNet’s success may be attributed
to the skip connection adopted in the message phase to alleviate
the over-smoothing and the vanishing gradient problem in GNNs
4, 63].

Discussion

In this paper, we show that TrimNet achieved impressive perfor-
mance on molecular representation learning tasks with signif-
icant parameter reduction. Compared with the previous state-
of-the-art attentive FP and MPNN, TrimNet explicitly dropped
the matrix mapping of the edge information and employed
the triplet-attentive edge network we proposed to reduce the
parameters and enhance the edge information extraction. The
edge features element-wise dot is the key component of triplet-
attentive edge network, which may make up for the edge infor-
mation loss caused by dropping the matrix mapping. Besides,
we found that the layer normalization is necessary for the ver-
tex representation update. However, although we reduced the
parameters, TrimNet has nearly the same training time as MPNN
when they have the same hyperparameters setting. That means
TrimNet could not reduce the computation complexity (time)
compared with MPNN. Nevertheless, the current computation
time of TrimNet can fully satisfy the chemists’ demands for
chemistry discovery, and we believe that this is unlikely to
become a bottleneck in the applications of our method.

Conclusions

In this work, we have proposed an DL approach employed a
novel triplet message mechanism to learn molecular representa-
tion efficiently, named TrimNet. In particular, TrimNet achieves
the new state-of-the-art performance on a variety of molec-
ular properties, including quantum properties, bioactivity and
physiology. In addition to the higher predictive accuracy and
fewer parameters, TrimNet provides an interpretable learning
with attention weights naturally focusing on crucial atoms and
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Table 4. Ablation studies on QM9 dataset

Model No norm? No edge? No edge multiply® TrimNet

TASKS ”w 0.0726 0.661 0.0930 0.0741
o 0.292 0.833 0.260 0.216
eHOMO 0.00222 0.00678 0.00266 0.00226
eLUMO 0.00197 0.00787 0.00250 0.00192
Ae 0.00325 0.00990 0.00416 0.00336
R2 40.824 83.734 9.510 2.178
ZPVE 0.000150 0.000640 0.000230 0.000140
uo 0.1871 0.1096 0.0684 0.0927
U 0.1557 0.1018 0.0715 0.0861
H 0.1987 0.0792 0.0861 0.0774
G 0.1912 0.0875 0.0769 0.0717
Cv 0.0876 0.4413 0.0815 0.0715

[a] Remove layer normalization in the message phase. [b] Remove edge feature using in the message phase. [c] Use a * x; instead of  * e;; x X; (Equation (3)) in the
message phase.

Table 5. The performances of TrimNet with different depth on QM9 dataset

Model information Depth 1 3 5 7 10
Total params 28k 56k 85k 114k 157k

TASKS n 0.0889 0.0741 0.0697 0.0675 0.0705
a 0.255 0.216 0.176 0.177 0.170
€HOMO 0.00266 0.00226 0.00219 0.00203 0.00213
eLUMO 0.00235 0.00192 0.00190 0.00180 0.00174
Ae 0.00384 0.00336 0.00310 0.00313 0.00301
R2 3.771 2.178 1.826 1.584 2.830
ZPVE 0.000173 0.000140 0.000140 0.000150 0.000130
uo 0.1021 0.0927 0.0624 0.0485 0.0422
0] 0.0927 0.0861 0.0663 0.0448 0.0511
H 0.0928 0.0774 0.0593 0.0465 0.0490
G 0.0923 0.0717 0.0611 0.0530 0.0418
Cv 0.0918 0.0715 0.0663 0.0647 0.0675

substructures responsible for the target properties. These results Supplementary data
have established TrimNet as a powerful and useful computa-

tional tool in solving the challenge of molecular representation Supplementary data are available at Briefings in Bioinformatics

learning. online.
Data Availability
Key points The quantum and drug datasets are available on the website

® TrimNet provides a new perspective from triplet of MoleculeNet: http://moleculenet.ai. The source code is
messages for molecular representation learning. It available in GitHub: https://github.com/yvquanli/trimnet.
employs a triplet message mechanism to calcu-
late message from atom-bond-atom information and
updates the hidden states of neural networks.

® TrimNet can significantly outperform current state- Acknowledgments
of-the-art methods on multiple molecular representa-
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