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A B S T R A C T   

The number of states required for describing a many-body quantum system increases exponentially with the 
number of particles; thus, it is time- and effort-consuming to exactly calculate molecular properties. Herein, we 
propose a deep learning algorithm named block-based graph neural network (BGNN) as an approximate solution. 
The algorithm can be understood as a representation learning process to extract useful interactions between a 
target atom and its neighboring atomic groups. Compared to other graph model variants, BGNN achieved the 
smallest mean absolute errors in most tasks on two large molecular datasets, QM9 and Alchemy. Our advanced 
machine learning method exhibits general applicability and can be readily employed for bioactivity prediction 
and other tasks relevant to drug discovery and materials design.   

1. Introduction 

Quantum mechanics provides a rigorous description of the forces 
that control the behavior of atomic and molecular crystalline materials 
[1], and molecular properties calculation is important for drug discov-
ery and material design. In the past, molecular properties are usually 
calculated by solving the Schrödinger equation [2], which consumes 
much time and effort. When dealing with large-scale molecular systems 
such as biomolecules, methods based on molecular mechanics (MM) 
[3,4] offer an appropriate tradeoff between accuracy and efficiency 
under various conditions. However, the MM methods have seen their 
limitation on accuracy in a wide range of scenarios [5]. 

There has been an ongoing endeavor to design more accurate algo-
rithms for estimating molecular properties. In particular, machine 
learning (ML) has proven to be a useful tool for predicting molecular 
properties [6–11]. However, most ML models strongly rely on expert- 
crafted features, such as fingerprints and molecular descriptors. As the 
number of molecular data has been increasing enormously in this era of 
big data, the traditional machine learning methods, without a feature- 
learning capability, will gradually lose their advantages [12] as wit-
nessed in other application domains of ML, such as computer visions 

[13–15] and natural language processing [16,17]. 
The rise of deep learning leads to many advances in predicting mo-

lecular properties [1,18–21] with the data-driven approach. With the 
development of various training techniques [22,23], deep learning 
methods have caught up with traditional ML methods in performance. 
At the same time, it enjoys some advantages such as high accuracy and 
automatic learning of the features. 

Graph neural networks (GNNs) are deep learning based methods that 
operate on the graph domain [24,25]. When applied to molecular 
properties prediction, the graph neural networks take the mere molecule 
graph as input, with almost no feature engineering required. Despite this 
simplicity, GNNs have exhibited performance significantly better than 
previous machine learning models [6–11], showing the power of 
exploiting the natural graph structure in molecules. 

In the beginning, the graph neural networks are used to generate 
molecular fingerprints [26] as the input of machine learning methods. It 
is gradually realized that graph networks can directly perform repre-
sentation learning on molecules. Kearnes et al. [27] proposed to use 
molecular graph convolutions to predict molecular properties for high- 
throughput molecular screening. Schütt et al. [28] developed a deep 
tensor neural network that enables spatially and chemically resolved 

* Corresponding author. 
E-mail address: xjyao@lzu.edu.cn (X. Yao).  

Contents lists available at ScienceDirect 

Chemical Engineering Journal 

journal homepage: www.elsevier.com/locate/cej 

https://doi.org/10.1016/j.cej.2021.128817 
Received 17 June 2020; Received in revised form 8 December 2020; Accepted 30 January 2021   



Chemical Engineering Journal 414 (2021) 128817

2

insights into quantum-mechanical observables of molecular systems. 
Gilmer et al. [12] summarized these models and reinterpreted them 
using message passing neural networks. Since then, some other variants 
of message passing neural networks have been proposed [1,29–34]. 
Even though graph neural networks manifest many encouraging results, 
their performance is actually limited by the network degradation 
problem without a universal solution [35]. Network degradation means 
that a network’s performance gets saturated and followed by rapid 
degradation as the network depth increases. 

In this work, we propose a new graph learning paradigm based on a 
block design named block-based graph neural network (BGNN) and 
demonstrate that the network degradation problem can be reduced by 
applying block design with normalization and skip-connection. This 
learning paradigm enables more efficient information flow in the 
network due to the layer-by-layer representation learning. We then test 
BGNN on QM9 [38] and Alchemy [39], two largest benchmark datasets 
for molecular properties. As shown by experimental results, our BGNN 
can accurately predict molecular properties. Compared to the previous 
works, the estimation mean absolute error on the test set is more 
acceptable for practice. 

2. Material and methods 

2.1. Dataset 

2.1.1. QM9 dataset 
We select the QM9 [38] dataset, which is commonly used as a 

benchmark to validate graph neural networks designed for molecular 
sciences. The dataset can be downloaded from MoleculeNet [40], which 
contains the structural data and thirteen molecular properties for 
roughly 130 k small molecules with up to nine non-hydrogen heavy 
atoms made of C, O, N, and F. All molecular geometries were relaxed, 
and their properties were calculated at the DFT B3LYP/6-31G(2df,p) 
level of theory. Here, we use twelve out of thirteen properties for the 
prediction task, as shown in Table 1. The molecules are randomly split to 
a training set, a validation set, and a test set with an 8:1:1 ratio. 

2.1.2. Alchemy dataset 
Alchemy [39] is one of the latest and largest molecular property 

benchmark dataset. It contains 130 k organic molecules with the same 
twelve molecular properties as of QM9. Those molecules were selected 
from the GDB MedChem [41] database, which has presumably better 
pharmaceutical relevance than MoleculeNet. Each molecule in Alchemy 
dataset has 9–12 non-hydrogen atoms, made up of C, N, O, F, S, and Cl 
[41]. These molecular properties are calculated using the Python-based 
Simulations of Chemistry Framework (PySCF) [42]. Here, we consider 
all twelve properties, as shown in Table 1. The dataset is also randomly 

split into a training set, a validation set, and a test set in the ratio of 
8:1:1. We downloaded the 130 k version dataset used in Chen et al. [39] 
from Tencent Quantum Laboratory. 

2.1.3. Dataset preprocessing 
To enable graph-based learning, we process all molecules into mo-

lecular graphs with basic features, as shown in Table 2. In practice, 
molecular graphs are often transformed into matrix representations to 
save memory and improve calculating efficiency [43], including node 
features, edge features, and atomic coordinates, as shown in Fig. 1. The 
atom feature matrix contains all atoms and their feature information. 
The bond feature matrix contains all bonds and bond features. The co-
ordinates matrix contains the coordinate information of the atoms. 

Considering the long-distance propagation, we added virtual bonds 
to the graph to convert a molecular graph into a fully connected graph, 
as shown in Fig. 2, which is more conducive to message passing [12] and 
allows the message to pass over long distances. A fully connected graph 
means that all the atom pairs are connected, even if there are no bonds 
between them. 

2.2. Block-based graph neural networks 

2.2.1. Network degradation 
Following the intuition of layer-by-layer feature extraction, re-

searchers tend to design deeper networks with a more remarkable ability 
for representation learning [44]. However, a very general degradation 
problem has been exposed during the training of deeper networks: as the 
network depth increases, accuracy gets saturated and followed by a 
rapid degradation [14]. Thus, not all graph neural networks can be 
easily optimized. 

Li et al. [35] proposed to add skip connections and dilated convo-
lutions, which can deepen the Laplacian based graph neural networks to 
56 layers without performance degradation, indicating that network 
degradation can be mitigated with skip connections. 

2.2.2. Block-based GNN design 
The complexity of layer-by-layer stacking makes it challenging to 

design new network architectures. Herein, we propose to build graph 
neural networks using block design. The block design for neural network 
was first developed in Simonyan et al. [13] by VGG (Visual Geometry 
Group). Since then, many landmark models based on block design have 
been created [14–16,45]. 

A graph neural network usually consists of the following layers: 

Table 2 
Atom features and bond features used in the molecular graph.  

Type Feature Description Size 

Node 
feature 

Atom type H, C, N, O, F, S, Cl (one-hot) 7 
Atomic number Atomic number of the atom (integer) 1 
Acceptor Whether or not to accepts electrons 

(binary) 
2 

Donor Whether or not to donates electrons 
(binary) 

2 

Aromatic In an aromatic system (binary) 2 
Hybridization sp, sp2, sp3 (one-hot or null) 3 
Num. Hs. Number of hydrogens (integer) 1 
Explicit valence Explicit valence of this atom (integer) 1 
Implicit valence Implicit valence of this atom (integer) 1 
Formal charge Formal charge of this atom (integer) 1 
Num. explicit Hs. Number of implicit Hs. this atom is 

bound to (integer) 
1 

Num. radical 
electrons 

Number of radical electrons for this 
atom (integer) 

1  

Edge 
feature 

Bond type Single, double, triple, aromatic (one- 
hot) 

4 

Distance Euclidean distance between two atoms 
(float) 

1 

Conjugated Whether the bond is conjugate (binary) 2  

Table 1 
The property descriptions and units about the prediction tasks into QM9 and 
Alchemy dataset.  

Task Property description Unit 

mu Dipole moment Debye  
Alpha Polarizability a3

0  

HOMO Highest occupied molecular orbital Eh  

LUMO Lowest unoccupied molecular orbital Eh  

gap HOMO-LUMO gap Eh  

R2 Electronic spatial extent a2
0  

zpve Zero point vibrational energy Eh  

U0 Internal energy at 0 K Eh  

U Internal energy at 298.15 K Eh  

H Enthalpy at 298.15 K Eh  

G Free energy at 298.15 K Eh  

Cv Heat capacity at 298.15 K EhK− 1   
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1. Message passing layer, or graph convolutional layer  
2. Full-connected layer, or dense layer  
3. Graph pooling layer  
4. Graph normalization layer  
5. Activation layer  
6. Other mathematical operation layers 

Block design selects and combines several layers above to build a 

block. Building graph neural networks through block design bring many 
conveniences. 

2.2.3. Normalization in block 
A fundamental assumption that most learning algorithms rely on is 

that the training and test samples are independent and follow the same 
distribution. However, inside a deep neural network, each layer has 
input affected by randomness in parameter initialization and input, 
causing the internal covariate shift problem [22] that hurts the effi-
ciency and converge of the model’s training. 

Batch normalization (BN) is a widely-used method to mitigate this 
issue. During the training, the method normalizes the input to each layer 
to the same mean and variance. It allows the input value of the activa-
tion function to fall into a space that is more sensitive to the input, 
thereby avoiding the vanishing gradient problem. 

We propose to use node-level batch normalization [26] for graph 
data, as shown in Fig. 3. The graph network has been around for a long 
time, but there are very few works [26] about normalization. Because 
the graph data does not have the concept of width and height, and the 
number of atoms is uncertain, batch normalization cannot be directly 
applied to molecular graph data. By generalizing the standard batch 
normalization to node-level batch normalization, we can normalize the 
feature of each node, making it zero mean and unit variance to solve the 
internal covariate shift problem. 

Fig. 1. Molecular graphs stored as atomic feature matrix, bond feature matrix, and atomic coordinate matrix in computers.  

Fig. 2. The building of a fully connected molecular graph.  

Fig. 3. From batch normalization to node-level batch normalization. (a) Rep-
resents a general batch normalization technique, where C refers to the feature 
channel, N refers to the number of samples, and W and H refer to an image’s 
width and height. (b) Represents a node-level batch normalization technique, 
where C refers to an atom’s feature channel, N refers to the number of mo-
lecular graphs, and V refers to the number of atomic vertices. 

Y. Li et al.                                                                                                                                                                                                                                        



Chemical Engineering Journal 414 (2021) 128817

4

2.2.4. Mathematical description 
For simplicity, we describe a block consists of several layers, which is 

applied to molecular graphs G with node set {xi : i = 1,⋯, n} and edge 
set 

{
eij : i, j = 1,⋯, n

}
, where n is the number of atoms in the molecule. 

The forward propagation of a block-based graph neural network in-
cludes three phases: the graph learning phase, the transition operations 
phase, and the residual connection phase. 

2.2.4.1. First phase: message passing phase. Let hi be the hidden state at 
each node in the message passing phase. We use the message passing 
process to describe graph networks. Each message passing process 
consists of two parts: message calculation and hidden state updating. 

The message mji for passing is calculated according to Eq. (1), where 
M is the message function, and N(i) is the neighbors of the node i in 
graph G. 

mji =
∑

j∈N(i)

M
(
hi, hj, eij

)
(1) 

The message mji can also be calculated by directed message passing 
[34,36,37]. It considers directed messages from neighboring atom pairs. 
The directed message passing calculates the directed message mdirected

ji for 
updating according to Eqs. (1) and (2). 

mdirected
ji =

∑

k∈N(j)

M
(

mji,mkj, e*
kj

)
(2) 

In our works, we calculate the directed messages mdirected
ji according to 

Eqs. (3) and (4). 

mji = hi +
∑

j∈N(i)

hj⋅fh
(
eij
)

(3)  

mdirected
ji = mji +

∑

k∈N(j)

mkj⋅fm

(
e*

kj

)
(4)  

where fh is the edge eij embedding function for the hidden state hj, and fm 

is the edge e*
kj embedding function for the message mkj. In this case, N(j)

does not include node i. In Eq. (4), e*
kj can include more information such 

as the angle of three nodes i, j, k where i is regarded as a constant node. 
Then, hidden states h’

i at each node in the graph are updated by a gated 
recurrent unit GRU according to Eq. (5). 

h’
i = GRU

(
hi,mdirected

ji

)
(5) 

This description gives a complete message passing process. The 
entire process run recurrently T times. Consequently, the hidden state ht

i 

will be updated T times, and the hidden state hT
i is obtained at the end. 

2.2.4.2. Second phase: transition operations. This stage is a set O 
composed of some transition operations layers according to Eq. (6). The 
residual xres

i of node set xb
i is calculated in this phase. The set O contains 

at least two layers: the node-level normalization layer and the activation 
function layer, in our case node-level batch normalization and ReLU. 

xres
i = O(hT

i ). (6)  

2.2.4.3. Third phase: skip connection. This stage adds the residual xres
i to 

the input node set xb
i according to Eq. (7). 

xb+1
i = xres

i + xb
i (7) 

The skip connection can also be an extension of residual connection, 
such as the dense connection [15]. The node set xb

i is updated in each 
neural network block, and the final node set xB

i is obtained. 
Finally, the graph readout function R is applied in the output stage. It 

can map the output graph with node set xB
i into molecular properties 

according to Eq. (8). 

ŷ = R
( {

xB
i |i ∈ G

} )
(8)  

2.3. Block-based graph neural network 

Based on the description above, we design a neural network, as 
shown in Fig. 4. A molecule is first processed into a molecular graph as 
input. First, it is fed into a feed-forward neural network. The output is 
then processed by N residual blocks. Each block contains a directed 
message passing layer, a feed-forward neural network, and a node-level 
normalization layer. The readout function is used to map the output 
molecular graph into a flatten vector. This vector is finally mapped to a 
float number (corresponding to the predicted property) by a feed- 
forward neural network. As shown in Table 6, with the depth in-
creases, the performance of BGNN will improve. We observe that the 
model performs best with five message passing blocks, so we choose 
BGNN with a depth of five as the experimental model. 

We implemented the above model using pytorch_geometric [43], 
with the hyperparameters set shown in Table 3. We use a gated recurrent 
unit [46] neural networks for hidden status updates. Our readout 
function is Set2Set [47], which can capture more information than the 
global summing pool. The feed-forward neural network plays a role in 
enhancing the network’s expressive ability, and the number of which 
usually ranges from one to three. To prevent overfitting and save time, 
we adopt the early-stop technique. 

Fig. 4. The architecture of block-based graph neural network.  

Table 3 
The hyperparameters used in model training.  

Hyperparameter Value 

Epoch 400 
Batch size 64 
Optimizer Adam [23] 
Initial learning rate 0.0001 
LR reduce patience 5 
Early-stop patience 30  
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3. Results 

In this work, we test our algorithm on QM9 and Alchemy datasets. To 
validate models’ prediction performance, we calculate the mean abso-
lute error between the predicted value and the true value, the same as 
previous works [1,29–34]. The average of five repeated results is used as 
the final value. The depth of the BGNN model is five. 

We compare the mean absolute error of our BGNN method to other 
state-of-the-art ones (ECFP, CM, DTNN, MPNN, and AttentiveFP) in 
previous work [33,40]) in Table 4. The prediction mean absolute error 
of ECFP, CM, DTNN, MPNN, and AttentiveFP are taken from the refer-
ence [33]. As can be seen, our method achieves the smallest mean ab-
solute error in all the twelve molecular property prediction tasks. 

From Table 5, eleven out of twelve prediction tasks got the smallest 
mean absolute errors compared to other methods. These further 
demonstrate the accuracy of the BGNN method as a robust learning al-
gorithm for molecular properties. 

4. Discussions 

4.1. Impact of depth 

To further analyze the performance of BGNN, we investigate the 
impact of the depth, that is, the message passing blocks number on the 
performance of BGNN, as shown in Table 6. As the depth increases, the 
performance of BGNN will improve. Even when the depth increases to 
10 blocks, there are still performance improvements in some prediction 
tasks. These results indicate that deeper BGNN has a more remarkable 
ability to learn molecular representation. As shown in Fig. 5, we test four 
different models in six different depths. We found that a graph model 
will have an increase in prediction error as the depth deepens. When 
normalization and residual connection are added, the model will not 
show a significant performance degradation as the depth deepens. 
BGNN can reduce the impact of the network degradation problem and 
improve performance. 

4.2. Impact of block design 

We introduced block design to reduce the impact of network 
degradation and boost performance. Here, we selected a few represen-
tative tasks based on the test in Table 6, and investigate the impact of 
key layers in this block on performance by removing or keeping these 
layers. As shown in Fig. 5, we test four different models, and BGNN got 
the smallest mean absolute error in most cases. As the batch normali-
zation and residual connection are removed, the prediction error is 
similar to MPNN. After adding batch normalization and residual 
connection, the model’s prediction error has decreased on most pre-
diction tasks, among which batch normalization brings a greater 
improvement than residual connection. The results indicate that block 
design with normalization and skip connection plays essential roles in 
our model. 

5. Conclusions 

In this paper, we proposed a new algorithm BGNN to predict mo-
lecular properties. The method introduced block design in graph neural 
networks with normalization and skip connection. When applied to 
molecule properties prediction, the method takes molecular graphs with 
basic features as inputs. We validate our algorithm on two large mo-
lecular properties datasets for benchmarking. As a result, BGNN ach-
ieved the smallest mean absolute errors in most tasks on two large 
molecular datasets. These experiments demonstrate the accuracy of the 
new method in predicting molecular properties. 
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Table 4 
Prediction mean absolute error on the QM9 datasets.  

Task ECFP CM DTNN MPNN AttentiveFP BGNN 

mu 0.602 0.519 0.244 0.358 0.451 0.057 
Alpha 3.10 0.85 0.95 0.89 0.492 0.217 
HOMO 0.0066 0.00506 0.00388 0.00541 0.00358 0.00225 
LUMO 0.00854 0.00645 0.00513 0.00623 0.00415 0.00193 
gap 0.01 0.0086 0.0066 0.0082 0.00528 0.00334 
R2 125.7 46 17 28.5 26.839 3.017 
zpve 0.01109 0.00207 0.00172 0.00216 0.00120 0.00027 
U0 15.1 2.27 2.43 2.05 0.898 0.087 
U 15.1 2.27 2.43 2.00 0.893 0.085 
H 15.1 2.27 2.43 2.02 0.893 0.113 
G 15.1 2.27 2.43 2.02 0.893 0.133 
Cv 1.77 0.39 0.27 0.42 0.252 0.105  

Table 5 
Prediction mean absolute error on the 130 k version Alchemy dataset.  

Task MPNNa MPNNb BGNN 

mu 0.0303 0.0210 0.00892 
Alpha 0.0647 0.0459 0.0362 
HOMO 0.0940 0.0733 0.0604 
LUMO 0.0272 0.0163 0.00104 
gap 0.1220 0.0928 0.0967 
R2 0.0272 0.0163 0.00324 
zpve 0.0938 0.0564 0.0321 
U0 0.0272 0.0163 0.00111 
U 0.0272 0.0163 0.00212 
H 0.1023 0.0776 0.0562 
G 0.1282 0.0819 0.0676 
Cv 0.0425 0.0277 0.0174  

a The best score with a random split from the original paper. 
b The best score with a stratified split from the original paper. 

Table 6 
Prediction mean absolute error on QM9 dataset with different depth.  

Depth 1 2 3 5 10 

mu 0.075 0.070 0.070 0.057 0.081 
Alpha 0.368 0.286 0.274 0.217 0.325 
HOMO 0.00227 0.00216 0.00207 0.00225 0.00337 
LUMO 0.00222 0.00202 0.00199 0.00193 0.00269 
gap 0.00327 0.00318 0.00328 0.00334 0.00354 
R2 4.467 3.201 3.976 3.017 2.554 
zpve 0.00026 0.00022 0.00027 0.00027 0.00032 
U0 0.121 0.105 0.091 0.087 0.186 
U 0.129 0.128 0.112 0.085 0.134 
H 0.117 0.094 0.091 0.113 0.111 
G 0.132 0.114 0.109 0.133 0.165 
Cv 0.139 0.123 0.121 0.105 0.119 

Bold text indicates that this model obtains the smallest test set error. 
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